Dirichlet series
$L(s,f)$ = 1 | − 1.32·2-s − 0.577·3-s + 0.765·4-s + 0.447·5-s + 0.767·6-s − 0.907·7-s + 0.312·8-s + 0.333·9-s − 0.594·10-s + 1.55·11-s − 0.441·12-s + 0.00445·13-s + 1.20·14-s − 0.258·15-s − 1.17·16-s − 0.295·17-s − 0.442·18-s + 1.47·19-s + 0.342·20-s + 0.524·21-s − 2.06·22-s + 0.194·23-s − 0.180·24-s + 0.199·25-s − 0.00592·26-s − 0.192·27-s − 0.694·28-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,f)=\mathstrut & 15 ^{s/2} \, \Gamma_{\R}(s+(1 + 4.22i)) \, \Gamma_{\R}(s+(1 - 4.22i)) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned}\]
Invariants
Degree: | \(2\) |
Conductor: | \(15\) = \(3 \cdot 5\) |
Sign: | $1$ |
Arithmetic: | no |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((2,\ 15,\ (1 + 4.22329657414i, 1 - 4.22329657414i:\ ),\ 1)\) |
Euler product
\(L(s,f) = \displaystyle\prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\)
Imaginary part of the first few zeros on the critical line