Properties

Degree 2
Conductor $ 2 \cdot 5 $
Sign $1$
Primitive yes
Self-dual yes

Related objects

Learn more about

Dirichlet series

$L(s,f)$  = 1  − 0.707·2-s + 1.71·3-s + 0.5·4-s − 0.447·5-s − 1.20·6-s + 1.94·7-s − 0.353·8-s + 1.92·9-s + 0.316·10-s + 1.22·11-s + 0.855·12-s − 0.670·13-s − 1.37·14-s − 0.764·15-s + 0.250·16-s − 1.29·17-s − 1.36·18-s + 1.25·19-s − 0.223·20-s + 3.32·21-s − 0.863·22-s + 0.785·23-s − 0.604·24-s + 0.199·25-s + 0.474·26-s + 1.58·27-s + 0.971·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,f)=\mathstrut & 10 ^{s/2} \, \Gamma_{\R}(s+30.4i) \, \Gamma_{\R}(s-30.4i) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(10\)    =    \(2 \cdot 5\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  \((2,\ 10,\ (30.4874572847i, -30.4874572847i:\ ),\ 1)\)

Euler product

\[\begin{aligned}L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line