Properties

Degree $2$
Conductor $4$
Sign $1$
Arithmetic no
Primitive yes
Self-dual yes

Related objects

Learn more

Dirichlet series

$L(s,f)$  = 1  − 1.14·3-s − 0.646·5-s + 0.147·7-s + 0.320·9-s + 0.190·11-s − 1.54·13-s + 0.742·15-s + 0.308·17-s − 1.57·19-s − 0.169·21-s − 1.86·23-s − 0.582·25-s + 0.780·27-s + 0.0771·29-s − 0.808·31-s − 0.218·33-s − 0.0955·35-s − 0.237·37-s + 1.77·39-s + 0.842·41-s − 1.77·43-s − 0.178·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,f)=\mathstrut & 4 ^{s/2} \, \Gamma_{\R}(s+(1 + 26.0i)) \, \Gamma_{\R}(s+(1 - 26.0i)) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4\)    =    \(2^{2}\)
Sign: $1$
Arithmetic: no
Primitive: yes
Self-dual: yes
Selberg data: \((2,\ 4,\ (1 + 26.0106826228i, 1 - 26.0106826228i:\ ),\ 1)\)

Euler product

\(L(s,f) = \displaystyle\prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.