Properties

Degree $2$
Conductor $4$
Sign $-1$
Arithmetic no
Primitive yes
Self-dual yes

Related objects

Learn more

Dirichlet series

$L(s,f)$  = 1  − 0.248·3-s − 0.0515·5-s + 0.710·7-s − 0.938·9-s + 1.03·11-s + 0.311·13-s + 0.0128·15-s − 1.78·17-s − 1.53·19-s − 0.176·21-s − 0.991·23-s − 0.997·25-s + 0.481·27-s + 0.399·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,f)=\mathstrut & 4 ^{s/2} \, \Gamma_{\R}(s+14.4i) \, \Gamma_{\R}(s-14.4i) \, L(s,f)\cr =\mathstrut & -\, \Lambda(1-s,f) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4\)    =    \(2^{2}\)
Sign: $-1$
Arithmetic: no
Primitive: yes
Self-dual: yes
Selberg data: \((2,\ 4,\ (14.4778027317i, -14.4778027317i:\ ),\ -1)\)

Euler product

\(L(s,f) = \displaystyle\prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\)

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.