Dirichlet series
$L(s,f)$ = 1 | + 1.74·2-s + 0.577·3-s + 2.04·4-s + 0.447·5-s + 1.00·6-s − 1.40·7-s + 1.81·8-s + 0.333·9-s + 0.779·10-s + 0.559·11-s + 1.17·12-s − 1.48·13-s − 2.45·14-s + 0.258·15-s + 1.12·16-s + 0.185·17-s + 0.581·18-s − 0.235·19-s + 0.912·20-s − 0.813·21-s + 0.974·22-s + 0.322·23-s + 1.04·24-s + 0.199·25-s − 2.59·26-s + 0.192·27-s − 2.87·28-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,f)=\mathstrut & 15 ^{s/2} \, \Gamma_{\R}(s+4.53i) \, \Gamma_{\R}(s-4.53i) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned}\]
Invariants
Degree: | \(2\) |
Conductor: | \(15\) = \(3 \cdot 5\) |
Sign: | $1$ |
Arithmetic: | no |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((2,\ 15,\ (4.53086807747i, -4.53086807747i:\ ),\ 1)\) |
Euler product
\(L(s,f) = \displaystyle\prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\)
Imaginary part of the first few zeros on the critical line