Dirichlet series
$L(s,f)$ = 1 | − 1.82·2-s + 1.17·3-s + 2.33·4-s + 0.882·5-s − 2.13·6-s + 0.0850·7-s − 2.43·8-s + 0.372·9-s − 1.61·10-s + 0.479·11-s + 2.73·12-s − 0.480·13-s − 0.155·14-s + 1.03·15-s + 2.11·16-s − 1.88·17-s − 0.680·18-s + 0.570·19-s + 2.06·20-s + 0.0995·21-s − 0.876·22-s − 0.282·23-s − 2.85·24-s − 0.220·25-s + 0.877·26-s − 0.735·27-s + 0.198·28-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,f)=\mathstrut & 31 ^{s/2} \, \Gamma_{\R}(s+(1 + 1.34i)) \, \Gamma_{\R}(s+(1 - 1.34i)) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned}\]
Invariants
Degree: | \(2\) |
Conductor: | \(31\) |
Sign: | $1$ |
Arithmetic: | no |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((2,\ 31,\ (1 + 1.343010459i, 1 - 1.343010459i:\ ),\ 1)\) |
Euler product
\(L(s,f) = \displaystyle\prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\)
Imaginary part of the first few zeros on the critical line