Dirichlet series
$L(s,f)$ = 1 | − 1.63·2-s + 0.577·3-s + 1.68·4-s + 0.447·5-s − 0.945·6-s − 0.211·7-s − 1.12·8-s + 0.333·9-s − 0.732·10-s + 0.527·11-s + 0.972·12-s + 0.197·13-s + 0.346·14-s + 0.258·15-s + 0.153·16-s − 1.34·17-s − 0.546·18-s + 0.537·19-s + 0.753·20-s − 0.122·21-s − 0.863·22-s + 1.17·23-s − 0.647·24-s + 0.199·25-s − 0.323·26-s + 0.192·27-s − 0.356·28-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s,f)=\mathstrut & 15 ^{s/2} \, \Gamma_{\R}(s+1.82i) \, \Gamma_{\R}(s-1.82i) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned}\]
Invariants
Degree: | \(2\) |
Conductor: | \(15\) = \(3 \cdot 5\) |
Sign: | $1$ |
Arithmetic: | no |
Primitive: | yes |
Self-dual: | yes |
Selberg data: | \((2,\ 15,\ (1.82147632892i, -1.82147632892i:\ ),\ 1)\) |
Euler product
\(L(s,f) = \displaystyle\prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\)
Imaginary part of the first few zeros on the critical line