Properties

Degree $2$
Conductor $15$
Sign $1$
Arithmetic no
Primitive yes
Self-dual yes

Related objects

Learn more about

Dirichlet series

$L(s,f)$  = 1  − 1.63·2-s + 0.577·3-s + 1.68·4-s + 0.447·5-s − 0.945·6-s − 0.211·7-s − 1.12·8-s + 0.333·9-s − 0.732·10-s + 0.527·11-s + 0.972·12-s + 0.197·13-s + 0.346·14-s + 0.258·15-s + 0.153·16-s − 1.34·17-s − 0.546·18-s + 0.537·19-s + 0.753·20-s − 0.122·21-s − 0.863·22-s + 1.17·23-s − 0.647·24-s + 0.199·25-s − 0.323·26-s + 0.192·27-s − 0.356·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,f)=\mathstrut & 15 ^{s/2} \, \Gamma_{\R}(s+1.82i) \, \Gamma_{\R}(s-1.82i) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15\)    =    \(3 \cdot 5\)
Sign: $1$
Arithmetic: no
Primitive: yes
Self-dual: yes
Selberg data: \((2,\ 15,\ (1.82147632892i, -1.82147632892i:\ ),\ 1)\)

Euler product

\(L(s,f) = \displaystyle\prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line