Properties

Degree $2$
Conductor $26$
Sign $1$
Arithmetic no
Primitive yes
Self-dual yes

Related objects

Learn more about

Dirichlet series

$L(s,f)$  = 1  − 0.707·2-s − 1.26·3-s + 0.5·4-s + 1.49·5-s + 0.894·6-s − 0.581·7-s − 0.353·8-s + 0.600·9-s − 1.05·10-s + 1.13·11-s − 0.632·12-s − 0.277·13-s + 0.411·14-s − 1.89·15-s + 0.250·16-s + 0.388·17-s − 0.424·18-s − 0.167·19-s + 0.749·20-s + 0.736·21-s − 0.804·22-s + 0.0523·23-s + 0.447·24-s + 1.24·25-s + 0.196·26-s + 0.505·27-s − 0.290·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,f)=\mathstrut & 26 ^{s/2} \, \Gamma_{\R}(s+1.37i) \, \Gamma_{\R}(s-1.37i) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,f) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $1$
Arithmetic: no
Primitive: yes
Self-dual: yes
Selberg data: \((2,\ 26,\ (1.37694606445i, -1.37694606445i:\ ),\ 1)\)

Euler product

\(L(s,f) = \displaystyle\prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \chi(p)p^{-2s})^{-1}\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line