Properties

Label 4-600e2-1.1-c1e2-0-35
Degree $4$
Conductor $360000$
Sign $-1$
Analytic cond. $22.9539$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s + 2·4-s − 4·6-s + 3·9-s + 4·11-s − 4·12-s − 4·16-s + 4·17-s + 6·18-s − 10·19-s + 8·22-s − 4·27-s − 8·32-s − 8·33-s + 8·34-s + 6·36-s − 20·38-s − 16·41-s + 2·43-s + 8·44-s + 8·48-s − 5·49-s − 8·51-s − 8·54-s + 20·57-s − 20·59-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.15·3-s + 4-s − 1.63·6-s + 9-s + 1.20·11-s − 1.15·12-s − 16-s + 0.970·17-s + 1.41·18-s − 2.29·19-s + 1.70·22-s − 0.769·27-s − 1.41·32-s − 1.39·33-s + 1.37·34-s + 36-s − 3.24·38-s − 2.49·41-s + 0.304·43-s + 1.20·44-s + 1.15·48-s − 5/7·49-s − 1.12·51-s − 1.08·54-s + 2.64·57-s − 2.60·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(360000\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(22.9539\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 360000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
5 \( 1 \)
good7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 17 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.546309213405963304177966155831, −7.87914659835863207294698651709, −7.26683856545720539350458472989, −6.79375443883521821659151920822, −6.35078788674859422957686456838, −6.05569215012514529764032801313, −5.76958242735491544916508279271, −4.92993401446228872799172657878, −4.62309319523854591570832526017, −4.30861693097863502278050736122, −3.51380796888682305453962490670, −3.24466149791278329969031792942, −2.09699607926453765135786428693, −1.48244217054512001330990913109, 0, 1.48244217054512001330990913109, 2.09699607926453765135786428693, 3.24466149791278329969031792942, 3.51380796888682305453962490670, 4.30861693097863502278050736122, 4.62309319523854591570832526017, 4.92993401446228872799172657878, 5.76958242735491544916508279271, 6.05569215012514529764032801313, 6.35078788674859422957686456838, 6.79375443883521821659151920822, 7.26683856545720539350458472989, 7.87914659835863207294698651709, 8.546309213405963304177966155831

Graph of the $Z$-function along the critical line