Properties

Label 4-332928-1.1-c1e2-0-17
Degree $4$
Conductor $332928$
Sign $-1$
Analytic cond. $21.2277$
Root an. cond. $2.14647$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s − 2·9-s − 3·11-s − 12-s + 16-s + 2·18-s − 3·19-s + 3·22-s + 24-s + 7·25-s + 5·27-s − 32-s + 3·33-s − 2·36-s + 3·38-s − 15·41-s + 14·43-s − 3·44-s − 48-s + 6·49-s − 7·50-s − 5·54-s + 3·57-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s − 2/3·9-s − 0.904·11-s − 0.288·12-s + 1/4·16-s + 0.471·18-s − 0.688·19-s + 0.639·22-s + 0.204·24-s + 7/5·25-s + 0.962·27-s − 0.176·32-s + 0.522·33-s − 1/3·36-s + 0.486·38-s − 2.34·41-s + 2.13·43-s − 0.452·44-s − 0.144·48-s + 6/7·49-s − 0.989·50-s − 0.680·54-s + 0.397·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(332928\)    =    \(2^{7} \cdot 3^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(21.2277\)
Root analytic conductor: \(2.14647\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 332928,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_2$ \( 1 + T + p T^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 - T + p T^{2} ) \)
47$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 43 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 107 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 60 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.599569373055739099398430093325, −8.243395735717040315208190823106, −7.57053868656842822299324657103, −7.17061600949874038740815379553, −6.74297579027304684065669752546, −6.11389130747304760389727063730, −5.82167479893925239775852515335, −5.16063838149344382142514436928, −4.84051543331438606923344010770, −4.09358748581592722649542913924, −3.27351388306579564969765149734, −2.72888652964056413613858980759, −2.15497184161703396786780118670, −1.05407845064146052673788820632, 0, 1.05407845064146052673788820632, 2.15497184161703396786780118670, 2.72888652964056413613858980759, 3.27351388306579564969765149734, 4.09358748581592722649542913924, 4.84051543331438606923344010770, 5.16063838149344382142514436928, 5.82167479893925239775852515335, 6.11389130747304760389727063730, 6.74297579027304684065669752546, 7.17061600949874038740815379553, 7.57053868656842822299324657103, 8.243395735717040315208190823106, 8.599569373055739099398430093325

Graph of the $Z$-function along the critical line