Properties

Label 4-1783296-1.1-c1e2-0-7
Degree $4$
Conductor $1783296$
Sign $-1$
Analytic cond. $113.704$
Root an. cond. $3.26546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 3·11-s + 2·17-s − 8·19-s + 6·25-s + 27-s − 3·33-s + 7·41-s − 9·43-s − 5·49-s + 2·51-s − 8·57-s − 23·59-s + 7·67-s + 13·73-s + 6·75-s + 81-s + 19·83-s − 3·89-s − 2·97-s − 3·99-s + 7·107-s − 5·113-s − 3·121-s + 7·123-s + 127-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 0.904·11-s + 0.485·17-s − 1.83·19-s + 6/5·25-s + 0.192·27-s − 0.522·33-s + 1.09·41-s − 1.37·43-s − 5/7·49-s + 0.280·51-s − 1.05·57-s − 2.99·59-s + 0.855·67-s + 1.52·73-s + 0.692·75-s + 1/9·81-s + 2.08·83-s − 0.317·89-s − 0.203·97-s − 0.301·99-s + 0.676·107-s − 0.470·113-s − 0.272·121-s + 0.631·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1783296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1783296 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1783296\)    =    \(2^{9} \cdot 3^{4} \cdot 43\)
Sign: $-1$
Analytic conductor: \(113.704\)
Root analytic conductor: \(3.26546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1783296,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
43$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 8 T + p T^{2} ) \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 9 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 112 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 9 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83358910748423648257205248160, −7.16376391894635814087959727623, −6.79866427077655680229109324853, −6.28418883020590334772909027500, −6.06758220922893021476710814184, −5.30859801919420329839855171747, −4.89430022764209812025844516251, −4.57827498434006456118379582895, −4.01354881121351611063454741376, −3.35595623678010479206746130126, −3.05040555747868638302861071315, −2.34559092128197092484241727172, −1.97477029637729316409982379185, −1.09883264763357236202823260489, 0, 1.09883264763357236202823260489, 1.97477029637729316409982379185, 2.34559092128197092484241727172, 3.05040555747868638302861071315, 3.35595623678010479206746130126, 4.01354881121351611063454741376, 4.57827498434006456118379582895, 4.89430022764209812025844516251, 5.30859801919420329839855171747, 6.06758220922893021476710814184, 6.28418883020590334772909027500, 6.79866427077655680229109324853, 7.16376391894635814087959727623, 7.83358910748423648257205248160

Graph of the $Z$-function along the critical line