Properties

Label 4-120e2-1.1-c1e2-0-1
Degree $4$
Conductor $14400$
Sign $1$
Analytic cond. $0.918156$
Root an. cond. $0.978879$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 4-s + 2·6-s + 3·8-s + 3·9-s − 8·11-s + 2·12-s − 16-s + 4·17-s − 3·18-s + 8·19-s + 8·22-s − 6·24-s + 25-s − 4·27-s − 5·32-s + 16·33-s − 4·34-s − 3·36-s − 8·38-s + 20·41-s + 8·43-s + 8·44-s + 2·48-s − 14·49-s − 50-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.816·6-s + 1.06·8-s + 9-s − 2.41·11-s + 0.577·12-s − 1/4·16-s + 0.970·17-s − 0.707·18-s + 1.83·19-s + 1.70·22-s − 1.22·24-s + 1/5·25-s − 0.769·27-s − 0.883·32-s + 2.78·33-s − 0.685·34-s − 1/2·36-s − 1.29·38-s + 3.12·41-s + 1.21·43-s + 1.20·44-s + 0.288·48-s − 2·49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.918156\)
Root analytic conductor: \(0.978879\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3952199604\)
\(L(\frac12)\) \(\approx\) \(0.3952199604\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98983893146666191058257315512, −10.67892245123374144028858824682, −10.09004766089519189801221596346, −9.523451675812284265792380668213, −9.339349995423015885465559763611, −8.074746559817531846840486780032, −7.67749235610857150327119620769, −7.66488013441745380243230842523, −6.56365355473852823699216167747, −5.63406482120703248001185629214, −5.23920392624592057055772361749, −4.87700802399738744801917392626, −3.76558570458913747879946495025, −2.61544872003966305633910980827, −0.870154925974925884967934945032, 0.870154925974925884967934945032, 2.61544872003966305633910980827, 3.76558570458913747879946495025, 4.87700802399738744801917392626, 5.23920392624592057055772361749, 5.63406482120703248001185629214, 6.56365355473852823699216167747, 7.66488013441745380243230842523, 7.67749235610857150327119620769, 8.074746559817531846840486780032, 9.339349995423015885465559763611, 9.523451675812284265792380668213, 10.09004766089519189801221596346, 10.67892245123374144028858824682, 10.98983893146666191058257315512

Graph of the $Z$-function along the critical line