Properties

Label 4-1160e2-1.1-c1e2-0-1
Degree $4$
Conductor $1345600$
Sign $-1$
Analytic cond. $85.7966$
Root an. cond. $3.04345$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 6·9-s − 12·11-s − 16-s − 4·17-s + 6·18-s − 4·19-s + 12·22-s + 25-s − 5·32-s + 4·34-s + 6·36-s + 4·38-s + 4·41-s + 16·43-s + 12·44-s − 10·49-s − 50-s − 16·59-s + 7·64-s + 4·67-s + 4·68-s − 18·72-s − 12·73-s + 4·76-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 2·9-s − 3.61·11-s − 1/4·16-s − 0.970·17-s + 1.41·18-s − 0.917·19-s + 2.55·22-s + 1/5·25-s − 0.883·32-s + 0.685·34-s + 36-s + 0.648·38-s + 0.624·41-s + 2.43·43-s + 1.80·44-s − 1.42·49-s − 0.141·50-s − 2.08·59-s + 7/8·64-s + 0.488·67-s + 0.485·68-s − 2.12·72-s − 1.40·73-s + 0.458·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1345600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1345600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1345600\)    =    \(2^{6} \cdot 5^{2} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(85.7966\)
Root analytic conductor: \(3.04345\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1345600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
29$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69811968026233144209571661884, −7.64947192507391358342580089136, −7.21268730267367807174456588951, −6.18940471549529813746516486249, −6.01956800466047829467852819351, −5.52953758985945615238377066600, −5.11545930089817667279212368297, −4.64971827708119930945851978376, −4.39085556746158818377386484016, −3.29286190462535447792903746630, −2.95203182599403093553876063934, −2.38748749852525982096546382658, −2.08585145544051432773200925313, −0.51632190576688646302060522898, 0, 0.51632190576688646302060522898, 2.08585145544051432773200925313, 2.38748749852525982096546382658, 2.95203182599403093553876063934, 3.29286190462535447792903746630, 4.39085556746158818377386484016, 4.64971827708119930945851978376, 5.11545930089817667279212368297, 5.52953758985945615238377066600, 6.01956800466047829467852819351, 6.18940471549529813746516486249, 7.21268730267367807174456588951, 7.64947192507391358342580089136, 7.69811968026233144209571661884

Graph of the $Z$-function along the critical line