Properties

Label 4-720000-1.1-c1e2-0-44
Degree $4$
Conductor $720000$
Sign $1$
Analytic cond. $45.9078$
Root an. cond. $2.60298$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s + 2·6-s + 8-s + 3·9-s + 4·11-s + 2·12-s + 16-s − 4·17-s + 3·18-s + 4·22-s + 2·24-s + 4·27-s + 32-s + 8·33-s − 4·34-s + 3·36-s + 4·41-s + 8·43-s + 4·44-s + 2·48-s − 10·49-s − 8·51-s + 4·54-s + 20·59-s + 64-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.816·6-s + 0.353·8-s + 9-s + 1.20·11-s + 0.577·12-s + 1/4·16-s − 0.970·17-s + 0.707·18-s + 0.852·22-s + 0.408·24-s + 0.769·27-s + 0.176·32-s + 1.39·33-s − 0.685·34-s + 1/2·36-s + 0.624·41-s + 1.21·43-s + 0.603·44-s + 0.288·48-s − 1.42·49-s − 1.12·51-s + 0.544·54-s + 2.60·59-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 720000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(720000\)    =    \(2^{7} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(45.9078\)
Root analytic conductor: \(2.60298\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 720000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.568445638\)
\(L(\frac12)\) \(\approx\) \(5.568445638\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$ \( ( 1 - T )^{2} \)
5 \( 1 \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.294621404044321153232941656353, −7.82916843904617298969738068421, −7.47947512213883760565427163251, −6.73848316801603166260924120780, −6.64959962043719359186062300669, −6.25629768791183300682565415383, −5.34862637188603959556918580152, −5.13544146251726925083565635926, −4.30363492128197640914363500647, −3.90195979683780024724235112717, −3.79143046769365773246334925917, −2.87323565715695326749103005451, −2.45815773509881651106722995929, −1.85419289855368654610516185561, −1.03766093095475251256503366567, 1.03766093095475251256503366567, 1.85419289855368654610516185561, 2.45815773509881651106722995929, 2.87323565715695326749103005451, 3.79143046769365773246334925917, 3.90195979683780024724235112717, 4.30363492128197640914363500647, 5.13544146251726925083565635926, 5.34862637188603959556918580152, 6.25629768791183300682565415383, 6.64959962043719359186062300669, 6.73848316801603166260924120780, 7.47947512213883760565427163251, 7.82916843904617298969738068421, 8.294621404044321153232941656353

Graph of the $Z$-function along the critical line