Properties

Label 4-260876-1.1-c1e2-0-3
Degree $4$
Conductor $260876$
Sign $1$
Analytic cond. $16.6336$
Root an. cond. $2.01951$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 6·9-s + 11-s + 16-s + 16·23-s + 2·25-s + 6·36-s − 12·37-s + 44-s − 7·49-s − 12·53-s + 64-s + 8·67-s + 27·81-s + 16·92-s + 6·99-s + 2·100-s − 12·113-s + 121-s + 127-s + 131-s + 137-s + 139-s + 6·144-s − 12·148-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1/2·4-s + 2·9-s + 0.301·11-s + 1/4·16-s + 3.33·23-s + 2/5·25-s + 36-s − 1.97·37-s + 0.150·44-s − 49-s − 1.64·53-s + 1/8·64-s + 0.977·67-s + 3·81-s + 1.66·92-s + 0.603·99-s + 1/5·100-s − 1.12·113-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1/2·144-s − 0.986·148-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 260876 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260876 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(260876\)    =    \(2^{2} \cdot 7^{2} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(16.6336\)
Root analytic conductor: \(2.01951\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 260876,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.665622171\)
\(L(\frac12)\) \(\approx\) \(2.665622171\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + p T^{2} \)
11$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.057391921212177938213328394364, −8.494149622254059818080035076185, −7.85272986534120038415407467632, −7.32615693509824401196563041856, −7.03037470409764709156473949624, −6.66654967118821035672744944634, −6.33539770631464590838934287146, −5.29637285243714588581784021659, −4.95407749784441441983128839476, −4.60740616023990205481710981393, −3.71793124530211373357479879031, −3.34620467406033722077754124678, −2.57866198506403861623716189696, −1.58133106765564568625613031282, −1.16708884817637229457185444327, 1.16708884817637229457185444327, 1.58133106765564568625613031282, 2.57866198506403861623716189696, 3.34620467406033722077754124678, 3.71793124530211373357479879031, 4.60740616023990205481710981393, 4.95407749784441441983128839476, 5.29637285243714588581784021659, 6.33539770631464590838934287146, 6.66654967118821035672744944634, 7.03037470409764709156473949624, 7.32615693509824401196563041856, 7.85272986534120038415407467632, 8.494149622254059818080035076185, 9.057391921212177938213328394364

Graph of the $Z$-function along the critical line