Properties

Label 4-14112-1.1-c1e2-0-6
Degree $4$
Conductor $14112$
Sign $-1$
Analytic cond. $0.899793$
Root an. cond. $0.973947$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 4·7-s + 3·8-s + 9-s − 4·11-s + 4·14-s − 16-s − 18-s + 4·22-s − 8·23-s − 6·25-s + 4·28-s + 4·29-s − 5·32-s − 36-s − 12·37-s − 4·43-s + 4·44-s + 8·46-s + 9·49-s + 6·50-s + 4·53-s − 12·56-s − 4·58-s − 4·63-s + 7·64-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 1.51·7-s + 1.06·8-s + 1/3·9-s − 1.20·11-s + 1.06·14-s − 1/4·16-s − 0.235·18-s + 0.852·22-s − 1.66·23-s − 6/5·25-s + 0.755·28-s + 0.742·29-s − 0.883·32-s − 1/6·36-s − 1.97·37-s − 0.609·43-s + 0.603·44-s + 1.17·46-s + 9/7·49-s + 0.848·50-s + 0.549·53-s − 1.60·56-s − 0.525·58-s − 0.503·63-s + 7/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14112 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14112 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14112\)    =    \(2^{5} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(0.899793\)
Root analytic conductor: \(0.973947\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 14112,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 142 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.44454898913414486939724769503, −10.12029365328095173716368300113, −10.09990271855495778846661422563, −9.306204180494575020210566434453, −8.767444958989863355343652458642, −8.146135115788131129357222477812, −7.63787553506677429974008093288, −7.03947578447735256857195283239, −6.27855570452939790189820103933, −5.64719141855390848519374950583, −4.87603416006184254395760217623, −3.98440014921724214655734548220, −3.30940308562421900446742546394, −2.08203716194554985500996998790, 0, 2.08203716194554985500996998790, 3.30940308562421900446742546394, 3.98440014921724214655734548220, 4.87603416006184254395760217623, 5.64719141855390848519374950583, 6.27855570452939790189820103933, 7.03947578447735256857195283239, 7.63787553506677429974008093288, 8.146135115788131129357222477812, 8.767444958989863355343652458642, 9.306204180494575020210566434453, 10.09990271855495778846661422563, 10.12029365328095173716368300113, 10.44454898913414486939724769503

Graph of the $Z$-function along the critical line