Properties

Label 4-112e3-1.1-c1e2-0-11
Degree $4$
Conductor $1404928$
Sign $1$
Analytic cond. $89.5794$
Root an. cond. $3.07646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 4·9-s + 4·11-s + 4·23-s − 8·25-s + 6·29-s + 2·37-s + 4·43-s + 49-s − 18·53-s + 4·63-s + 4·77-s + 7·81-s + 16·99-s − 16·107-s + 2·109-s − 8·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 4·161-s + 163-s + ⋯
L(s)  = 1  + 0.377·7-s + 4/3·9-s + 1.20·11-s + 0.834·23-s − 8/5·25-s + 1.11·29-s + 0.328·37-s + 0.609·43-s + 1/7·49-s − 2.47·53-s + 0.503·63-s + 0.455·77-s + 7/9·81-s + 1.60·99-s − 1.54·107-s + 0.191·109-s − 0.752·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.315·161-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1404928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1404928\)    =    \(2^{12} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(89.5794\)
Root analytic conductor: \(3.07646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1404928,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.922655939\)
\(L(\frac12)\) \(\approx\) \(2.922655939\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 - T \)
good3$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
13$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
41$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
47$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 52 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 72 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.915144207419725785669631021978, −7.60203287739898202548703618565, −6.93346163725636557349314381144, −6.72305459865907500583847833745, −6.35450425123026125762345319603, −5.75728883712682047272289167543, −5.31595095938200746446044757037, −4.62671628560991609640445221297, −4.33025887020823913056965397308, −4.03610876874934079864871663138, −3.33698871476916751810714500256, −2.82964483355297486315249796798, −1.87347841878250018119639671708, −1.56934271928207379091420356476, −0.798154987491399331587158018335, 0.798154987491399331587158018335, 1.56934271928207379091420356476, 1.87347841878250018119639671708, 2.82964483355297486315249796798, 3.33698871476916751810714500256, 4.03610876874934079864871663138, 4.33025887020823913056965397308, 4.62671628560991609640445221297, 5.31595095938200746446044757037, 5.75728883712682047272289167543, 6.35450425123026125762345319603, 6.72305459865907500583847833745, 6.93346163725636557349314381144, 7.60203287739898202548703618565, 7.915144207419725785669631021978

Graph of the $Z$-function along the critical line