Properties

Label 4-280e2-1.1-c1e2-0-3
Degree $4$
Conductor $78400$
Sign $1$
Analytic cond. $4.99885$
Root an. cond. $1.49526$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 6·9-s + 8·11-s + 8·23-s + 25-s − 4·29-s + 12·37-s − 16·43-s + 9·49-s + 12·53-s + 24·63-s + 16·67-s − 32·77-s + 27·81-s − 48·99-s + 28·109-s + 36·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 32·161-s + 163-s + ⋯
L(s)  = 1  − 1.51·7-s − 2·9-s + 2.41·11-s + 1.66·23-s + 1/5·25-s − 0.742·29-s + 1.97·37-s − 2.43·43-s + 9/7·49-s + 1.64·53-s + 3.02·63-s + 1.95·67-s − 3.64·77-s + 3·81-s − 4.82·99-s + 2.68·109-s + 3.38·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 2.52·161-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(4.99885\)
Root analytic conductor: \(1.49526\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 78400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.132717564\)
\(L(\frac12)\) \(\approx\) \(1.132717564\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.851840183892789826086741161768, −9.022035638415746178025932660186, −8.938571023394552259974771089914, −8.568492662536040706055181654407, −7.73148938409257749345471205858, −6.97238544391138654785050907556, −6.56407051249131463125622663292, −6.27788039497575849944468549246, −5.70093888866808737514223874840, −5.08516938187217910881281818728, −4.17940013953949332311038958729, −3.38301616382596410288851087260, −3.26180587408034592610487247010, −2.29215136886722219541328805003, −0.834108506722948485247590602076, 0.834108506722948485247590602076, 2.29215136886722219541328805003, 3.26180587408034592610487247010, 3.38301616382596410288851087260, 4.17940013953949332311038958729, 5.08516938187217910881281818728, 5.70093888866808737514223874840, 6.27788039497575849944468549246, 6.56407051249131463125622663292, 6.97238544391138654785050907556, 7.73148938409257749345471205858, 8.568492662536040706055181654407, 8.938571023394552259974771089914, 9.022035638415746178025932660186, 9.851840183892789826086741161768

Graph of the $Z$-function along the critical line