Properties

Label 4-7742-1.1-c1e2-0-0
Degree $4$
Conductor $7742$
Sign $-1$
Analytic cond. $0.493636$
Root an. cond. $0.838208$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 5·4-s − 7-s − 5·8-s − 9-s − 9·11-s + 3·14-s + 16-s + 3·18-s + 27·22-s − 7·23-s − 3·25-s − 5·28-s − 29-s + 7·32-s − 5·36-s + 14·37-s − 6·43-s − 45·44-s + 21·46-s − 6·49-s + 9·50-s − 53-s + 5·56-s + 3·58-s + 63-s − 15·64-s + ⋯
L(s)  = 1  − 2.12·2-s + 5/2·4-s − 0.377·7-s − 1.76·8-s − 1/3·9-s − 2.71·11-s + 0.801·14-s + 1/4·16-s + 0.707·18-s + 5.75·22-s − 1.45·23-s − 3/5·25-s − 0.944·28-s − 0.185·29-s + 1.23·32-s − 5/6·36-s + 2.30·37-s − 0.914·43-s − 6.78·44-s + 3.09·46-s − 6/7·49-s + 1.27·50-s − 0.137·53-s + 0.668·56-s + 0.393·58-s + 0.125·63-s − 1.87·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(0.493636\)
Root analytic conductor: \(0.838208\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 7742,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T + p T^{2} ) \)
7$C_2$ \( 1 + T + p T^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 11 T + p T^{2} ) \)
good3$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 88 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.21366454432362178409800896144, −10.67031227449828284600588290559, −10.15719752606998884328845703933, −9.827750040154990690504559207296, −9.348106052753687446219355176798, −8.391620093074762865941497641656, −8.056074514521538854040464618150, −7.77684157811220129973739110796, −7.07843402085020079516919923744, −6.12517083143332380413032407232, −5.51689714943361794564222825282, −4.48039111841836744764506978027, −2.94840603147446336550026274361, −2.15224515309300368213938566990, 0, 2.15224515309300368213938566990, 2.94840603147446336550026274361, 4.48039111841836744764506978027, 5.51689714943361794564222825282, 6.12517083143332380413032407232, 7.07843402085020079516919923744, 7.77684157811220129973739110796, 8.056074514521538854040464618150, 8.391620093074762865941497641656, 9.348106052753687446219355176798, 9.827750040154990690504559207296, 10.15719752606998884328845703933, 10.67031227449828284600588290559, 11.21366454432362178409800896144

Graph of the $Z$-function along the critical line