Properties

Label 4-1216800-1.1-c1e2-0-38
Degree $4$
Conductor $1216800$
Sign $-1$
Analytic cond. $77.5842$
Root an. cond. $2.96785$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s − 8-s + 9-s − 2·10-s + 16-s − 2·17-s − 18-s + 2·20-s + 3·25-s + 6·29-s − 32-s + 2·34-s + 36-s + 4·37-s − 2·40-s − 12·41-s + 2·45-s − 6·49-s − 3·50-s + 4·53-s − 6·58-s − 8·61-s + 64-s − 2·68-s − 72-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s + 1/3·9-s − 0.632·10-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 0.447·20-s + 3/5·25-s + 1.11·29-s − 0.176·32-s + 0.342·34-s + 1/6·36-s + 0.657·37-s − 0.316·40-s − 1.87·41-s + 0.298·45-s − 6/7·49-s − 0.424·50-s + 0.549·53-s − 0.787·58-s − 1.02·61-s + 1/8·64-s − 0.242·68-s − 0.117·72-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1216800\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(77.5842\)
Root analytic conductor: \(2.96785\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1216800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$ \( ( 1 - T )^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 106 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.987361795024339795662283769559, −7.32833413705432044347135260529, −6.85284220282740036840586761339, −6.55993095622274598408211011881, −6.26867307158483335186010775254, −5.56524513721541885838387047244, −5.26242109390800369165970363594, −4.68849314599593003136502163918, −4.16975831223379967729511728107, −3.55674599613018986821535090116, −2.68564362891618380770847463666, −2.62503701799559570764562418783, −1.58454257746921112913098418787, −1.31780003446384046459006095770, 0, 1.31780003446384046459006095770, 1.58454257746921112913098418787, 2.62503701799559570764562418783, 2.68564362891618380770847463666, 3.55674599613018986821535090116, 4.16975831223379967729511728107, 4.68849314599593003136502163918, 5.26242109390800369165970363594, 5.56524513721541885838387047244, 6.26867307158483335186010775254, 6.55993095622274598408211011881, 6.85284220282740036840586761339, 7.32833413705432044347135260529, 7.987361795024339795662283769559

Graph of the $Z$-function along the critical line