Properties

Label 4-1216800-1.1-c1e2-0-2
Degree $4$
Conductor $1216800$
Sign $1$
Analytic cond. $77.5842$
Root an. cond. $2.96785$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 8-s + 9-s + 2·10-s − 2·13-s + 16-s − 4·17-s − 18-s − 2·20-s + 3·25-s + 2·26-s + 4·29-s − 32-s + 4·34-s + 36-s + 4·37-s + 2·40-s − 12·41-s − 2·45-s + 2·49-s − 3·50-s − 2·52-s + 20·53-s − 4·58-s − 20·61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.353·8-s + 1/3·9-s + 0.632·10-s − 0.554·13-s + 1/4·16-s − 0.970·17-s − 0.235·18-s − 0.447·20-s + 3/5·25-s + 0.392·26-s + 0.742·29-s − 0.176·32-s + 0.685·34-s + 1/6·36-s + 0.657·37-s + 0.316·40-s − 1.87·41-s − 0.298·45-s + 2/7·49-s − 0.424·50-s − 0.277·52-s + 2.74·53-s − 0.525·58-s − 2.56·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1216800\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(77.5842\)
Root analytic conductor: \(2.96785\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1216800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7297265440\)
\(L(\frac12)\) \(\approx\) \(0.7297265440\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$ \( ( 1 + T )^{2} \)
13$C_1$ \( ( 1 + T )^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.006839463932712238130939236098, −7.61499574063730421950670590635, −7.15844162242666446745691958741, −6.88165838632433844511443205543, −6.51726694243101001979545867511, −5.84834039375614857057682337615, −5.42080963650772912060550607812, −4.75089895493111371395700607457, −4.33965496590448459865286945078, −4.01177849501872584924243319427, −3.16914625298580597606741543707, −2.83072987113389395332805085297, −2.10513111563423464681881247262, −1.40608557557707214069713458551, −0.43866809856586112619492267991, 0.43866809856586112619492267991, 1.40608557557707214069713458551, 2.10513111563423464681881247262, 2.83072987113389395332805085297, 3.16914625298580597606741543707, 4.01177849501872584924243319427, 4.33965496590448459865286945078, 4.75089895493111371395700607457, 5.42080963650772912060550607812, 5.84834039375614857057682337615, 6.51726694243101001979545867511, 6.88165838632433844511443205543, 7.15844162242666446745691958741, 7.61499574063730421950670590635, 8.006839463932712238130939236098

Graph of the $Z$-function along the critical line