Properties

Label 4-540e2-1.1-c1e2-0-5
Degree $4$
Conductor $291600$
Sign $1$
Analytic cond. $18.5926$
Root an. cond. $2.07651$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 2·5-s + 4·10-s − 10·13-s − 4·16-s + 16·17-s + 4·20-s + 3·25-s − 20·26-s − 4·29-s − 8·32-s + 32·34-s + 10·37-s + 20·41-s − 5·49-s + 6·50-s − 20·52-s + 4·53-s − 8·58-s + 14·61-s − 8·64-s − 20·65-s + 32·68-s − 10·73-s + 20·74-s − 8·80-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.894·5-s + 1.26·10-s − 2.77·13-s − 16-s + 3.88·17-s + 0.894·20-s + 3/5·25-s − 3.92·26-s − 0.742·29-s − 1.41·32-s + 5.48·34-s + 1.64·37-s + 3.12·41-s − 5/7·49-s + 0.848·50-s − 2.77·52-s + 0.549·53-s − 1.05·58-s + 1.79·61-s − 64-s − 2.48·65-s + 3.88·68-s − 1.17·73-s + 2.32·74-s − 0.894·80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 291600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 291600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(291600\)    =    \(2^{4} \cdot 3^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(18.5926\)
Root analytic conductor: \(2.07651\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 291600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.293649675\)
\(L(\frac12)\) \(\approx\) \(4.293649675\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.209731645846489900441455328004, −8.033038279448884875142132147382, −7.72379481902030800570658235358, −7.49513099271809325678009295871, −6.88066201922308126532422526866, −6.25177698744351379012073167484, −5.60485752225476628583929294992, −5.43765056456230093289829322534, −5.21952785456145416033046309322, −4.39646975608954166240974959735, −3.97301637909484367451284003600, −3.07119386896251421193504749200, −2.76209099156017414000056665621, −2.20929616241085403285528735477, −1.02045420469944533258202986585, 1.02045420469944533258202986585, 2.20929616241085403285528735477, 2.76209099156017414000056665621, 3.07119386896251421193504749200, 3.97301637909484367451284003600, 4.39646975608954166240974959735, 5.21952785456145416033046309322, 5.43765056456230093289829322534, 5.60485752225476628583929294992, 6.25177698744351379012073167484, 6.88066201922308126532422526866, 7.49513099271809325678009295871, 7.72379481902030800570658235358, 8.033038279448884875142132147382, 9.209731645846489900441455328004

Graph of the $Z$-function along the critical line