Properties

Label 4-180000-1.1-c1e2-0-13
Degree $4$
Conductor $180000$
Sign $-1$
Analytic cond. $11.4769$
Root an. cond. $1.84058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 9-s − 12·13-s + 16-s − 4·17-s + 18-s − 12·26-s + 32-s − 4·34-s + 36-s − 4·37-s + 4·41-s − 10·49-s − 12·52-s − 12·53-s + 4·61-s + 64-s − 4·68-s + 72-s + 8·73-s − 4·74-s + 81-s + 4·82-s − 20·89-s + 16·97-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 1/3·9-s − 3.32·13-s + 1/4·16-s − 0.970·17-s + 0.235·18-s − 2.35·26-s + 0.176·32-s − 0.685·34-s + 1/6·36-s − 0.657·37-s + 0.624·41-s − 1.42·49-s − 1.66·52-s − 1.64·53-s + 0.512·61-s + 1/8·64-s − 0.485·68-s + 0.117·72-s + 0.936·73-s − 0.464·74-s + 1/9·81-s + 0.441·82-s − 2.11·89-s + 1.62·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(180000\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(11.4769\)
Root analytic conductor: \(1.84058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 180000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5 \( 1 \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.040702798039804053791802466769, −8.342132676997866871617555456733, −7.72055975126333377666260774137, −7.47947512213883760565427163251, −6.87574139924512013673551975724, −6.64959962043719359186062300669, −5.91007962061405798709303677550, −5.13544146251726925083565635926, −4.89129507041850095151594897100, −4.50825772277642991881350186466, −3.79143046769365773246334925917, −2.89439976638041096085417523973, −2.45815773509881651106722995929, −1.78453255649523305607371273760, 0, 1.78453255649523305607371273760, 2.45815773509881651106722995929, 2.89439976638041096085417523973, 3.79143046769365773246334925917, 4.50825772277642991881350186466, 4.89129507041850095151594897100, 5.13544146251726925083565635926, 5.91007962061405798709303677550, 6.64959962043719359186062300669, 6.87574139924512013673551975724, 7.47947512213883760565427163251, 7.72055975126333377666260774137, 8.342132676997866871617555456733, 9.040702798039804053791802466769

Graph of the $Z$-function along the critical line