Properties

Label 4-456300-1.1-c1e2-0-4
Degree $4$
Conductor $456300$
Sign $1$
Analytic cond. $29.0940$
Root an. cond. $2.32247$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s + 4·7-s + 9-s + 12-s + 2·13-s + 16-s + 4·19-s + 4·21-s + 25-s + 27-s + 4·28-s + 16·31-s + 36-s + 4·37-s + 2·39-s − 8·43-s + 48-s − 2·49-s + 2·52-s + 4·57-s + 28·61-s + 4·63-s + 64-s − 8·67-s − 8·73-s + 75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s + 1.51·7-s + 1/3·9-s + 0.288·12-s + 0.554·13-s + 1/4·16-s + 0.917·19-s + 0.872·21-s + 1/5·25-s + 0.192·27-s + 0.755·28-s + 2.87·31-s + 1/6·36-s + 0.657·37-s + 0.320·39-s − 1.21·43-s + 0.144·48-s − 2/7·49-s + 0.277·52-s + 0.529·57-s + 3.58·61-s + 0.503·63-s + 1/8·64-s − 0.977·67-s − 0.936·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456300 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456300 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(456300\)    =    \(2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(29.0940\)
Root analytic conductor: \(2.32247\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 456300,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.766046509\)
\(L(\frac12)\) \(\approx\) \(3.766046509\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.437246301408132287185658098919, −8.087885366767377627830976038245, −7.923933777636678991733597967480, −7.22132321736582183105418204505, −6.77145317316863409022172537659, −6.43120366298051027513031512756, −5.65253747259908769204779494812, −5.29676874021080951505167112893, −4.68093937660591665826317564011, −4.28133784539552676878054432798, −3.67503080415102924262905860007, −2.75082196840239005573414536478, −2.66511745478862262440592508133, −1.49299392430960775577654396970, −1.23776016740289773990763514330, 1.23776016740289773990763514330, 1.49299392430960775577654396970, 2.66511745478862262440592508133, 2.75082196840239005573414536478, 3.67503080415102924262905860007, 4.28133784539552676878054432798, 4.68093937660591665826317564011, 5.29676874021080951505167112893, 5.65253747259908769204779494812, 6.43120366298051027513031512756, 6.77145317316863409022172537659, 7.22132321736582183105418204505, 7.923933777636678991733597967480, 8.087885366767377627830976038245, 8.437246301408132287185658098919

Graph of the $Z$-function along the critical line