Properties

Label 4-450261-1.1-c1e2-0-3
Degree $4$
Conductor $450261$
Sign $-1$
Analytic cond. $28.7090$
Root an. cond. $2.31475$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 3·7-s − 2·9-s − 2·12-s + 2·13-s − 3·19-s + 3·21-s − 3·25-s − 5·27-s − 6·28-s − 31-s + 4·36-s − 13·37-s + 2·39-s + 16·43-s + 2·49-s − 4·52-s − 3·57-s − 6·63-s + 8·64-s + 21·67-s − 5·73-s − 3·75-s + 6·76-s − 25·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 1.13·7-s − 2/3·9-s − 0.577·12-s + 0.554·13-s − 0.688·19-s + 0.654·21-s − 3/5·25-s − 0.962·27-s − 1.13·28-s − 0.179·31-s + 2/3·36-s − 2.13·37-s + 0.320·39-s + 2.43·43-s + 2/7·49-s − 0.554·52-s − 0.397·57-s − 0.755·63-s + 64-s + 2.56·67-s − 0.585·73-s − 0.346·75-s + 0.688·76-s − 2.81·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450261 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450261 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(450261\)    =    \(3^{2} \cdot 7^{2} \cdot 1021\)
Sign: $-1$
Analytic conductor: \(28.7090\)
Root analytic conductor: \(2.31475\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 450261,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + p T^{2} \)
7$C_2$ \( 1 - 3 T + p T^{2} \)
1021$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 6 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 25 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 27 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 9 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + 12 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 134 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 143 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.424036887663546570198648840785, −8.085475761546068793572907566637, −7.65501206675206392127566573968, −7.03614175219109605639723880081, −6.57746070916000794931138401285, −5.79084430198346401359893936623, −5.48455889715798123411165206386, −5.06671614397286644063726715115, −4.32592034761407320992470912355, −4.05322618891854994360263710762, −3.53727040837283068920094767150, −2.67733196041197725573620094704, −2.11790588581109296698180584237, −1.31415615737873275655069360860, 0, 1.31415615737873275655069360860, 2.11790588581109296698180584237, 2.67733196041197725573620094704, 3.53727040837283068920094767150, 4.05322618891854994360263710762, 4.32592034761407320992470912355, 5.06671614397286644063726715115, 5.48455889715798123411165206386, 5.79084430198346401359893936623, 6.57746070916000794931138401285, 7.03614175219109605639723880081, 7.65501206675206392127566573968, 8.085475761546068793572907566637, 8.424036887663546570198648840785

Graph of the $Z$-function along the critical line