Properties

Label 4-395307-1.1-c1e2-0-2
Degree $4$
Conductor $395307$
Sign $-1$
Analytic cond. $25.2051$
Root an. cond. $2.24064$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·4-s − 8·7-s + 9-s + 3·12-s + 4·13-s + 5·16-s + 8·21-s − 6·25-s − 27-s + 24·28-s − 16·31-s − 3·36-s + 12·37-s − 4·39-s − 5·48-s + 34·49-s − 12·52-s − 12·61-s − 8·63-s − 3·64-s − 8·67-s + 28·73-s + 6·75-s + 8·79-s + 81-s − 24·84-s + ⋯
L(s)  = 1  − 0.577·3-s − 3/2·4-s − 3.02·7-s + 1/3·9-s + 0.866·12-s + 1.10·13-s + 5/4·16-s + 1.74·21-s − 6/5·25-s − 0.192·27-s + 4.53·28-s − 2.87·31-s − 1/2·36-s + 1.97·37-s − 0.640·39-s − 0.721·48-s + 34/7·49-s − 1.66·52-s − 1.53·61-s − 1.00·63-s − 3/8·64-s − 0.977·67-s + 3.27·73-s + 0.692·75-s + 0.900·79-s + 1/9·81-s − 2.61·84-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 395307 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 395307 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(395307\)    =    \(3^{3} \cdot 11^{4}\)
Sign: $-1$
Analytic conductor: \(25.2051\)
Root analytic conductor: \(2.24064\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 395307,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
11 \( 1 \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.829662012954888204160857557729, −7.77744707656776841753907290662, −7.67376126887882242787787369865, −6.85553577597705614902881023761, −6.38866021531112361683475479825, −6.11982556539470572208453322290, −5.66464594246847012421851082372, −5.25909302550772251578024339366, −4.33065348032451946577135661956, −3.98994534926773298366607994601, −3.36662241945177810035682717763, −3.31119773648628104035349562784, −2.09666333780189433867543562159, −0.71891279628917143719551815370, 0, 0.71891279628917143719551815370, 2.09666333780189433867543562159, 3.31119773648628104035349562784, 3.36662241945177810035682717763, 3.98994534926773298366607994601, 4.33065348032451946577135661956, 5.25909302550772251578024339366, 5.66464594246847012421851082372, 6.11982556539470572208453322290, 6.38866021531112361683475479825, 6.85553577597705614902881023761, 7.67376126887882242787787369865, 7.77744707656776841753907290662, 8.829662012954888204160857557729

Graph of the $Z$-function along the critical line