Properties

Label 4-38988-1.1-c1e2-0-4
Degree $4$
Conductor $38988$
Sign $-1$
Analytic cond. $2.48590$
Root an. cond. $1.25565$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s − 8·7-s + 9-s + 12-s − 8·13-s + 16-s + 2·19-s − 8·21-s − 10·25-s + 27-s − 8·28-s + 4·31-s + 36-s − 8·37-s − 8·39-s − 8·43-s + 48-s + 34·49-s − 8·52-s + 2·57-s + 28·61-s − 8·63-s + 64-s + 16·67-s + 28·73-s − 10·75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s − 3.02·7-s + 1/3·9-s + 0.288·12-s − 2.21·13-s + 1/4·16-s + 0.458·19-s − 1.74·21-s − 2·25-s + 0.192·27-s − 1.51·28-s + 0.718·31-s + 1/6·36-s − 1.31·37-s − 1.28·39-s − 1.21·43-s + 0.144·48-s + 34/7·49-s − 1.10·52-s + 0.264·57-s + 3.58·61-s − 1.00·63-s + 1/8·64-s + 1.95·67-s + 3.27·73-s − 1.15·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38988 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38988 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(38988\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2.48590\)
Root analytic conductor: \(1.25565\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 38988,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 - T \)
19$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.814927382770120407835166865620, −9.659160529040683538070775225454, −9.465004478872581430365849790992, −8.381778434403041270610948676969, −7.973335490421157373200340268575, −7.06756557503064388001592546481, −6.84732233829542762166868447522, −6.59547283064248335138694127148, −5.61719283222003359694793802526, −5.21083603966480863402338802043, −3.89674503164637365373404147869, −3.58677867797817326821260752741, −2.72251484544452322835217288408, −2.34092707995523044468378525917, 0, 2.34092707995523044468378525917, 2.72251484544452322835217288408, 3.58677867797817326821260752741, 3.89674503164637365373404147869, 5.21083603966480863402338802043, 5.61719283222003359694793802526, 6.59547283064248335138694127148, 6.84732233829542762166868447522, 7.06756557503064388001592546481, 7.973335490421157373200340268575, 8.381778434403041270610948676969, 9.465004478872581430365849790992, 9.659160529040683538070775225454, 9.814927382770120407835166865620

Graph of the $Z$-function along the critical line