Properties

Label 4-31212-1.1-c1e2-0-0
Degree $4$
Conductor $31212$
Sign $1$
Analytic cond. $1.99010$
Root an. cond. $1.18773$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s + 9-s + 12-s − 4·13-s + 16-s + 8·19-s − 6·25-s + 27-s + 16·31-s + 36-s − 4·37-s − 4·39-s + 24·43-s + 48-s − 14·49-s − 4·52-s + 8·57-s − 20·61-s + 64-s − 24·67-s + 20·73-s − 6·75-s + 8·76-s − 16·79-s + 81-s + 16·93-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s + 1/3·9-s + 0.288·12-s − 1.10·13-s + 1/4·16-s + 1.83·19-s − 6/5·25-s + 0.192·27-s + 2.87·31-s + 1/6·36-s − 0.657·37-s − 0.640·39-s + 3.65·43-s + 0.144·48-s − 2·49-s − 0.554·52-s + 1.05·57-s − 2.56·61-s + 1/8·64-s − 2.93·67-s + 2.34·73-s − 0.692·75-s + 0.917·76-s − 1.80·79-s + 1/9·81-s + 1.65·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31212 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31212 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(31212\)    =    \(2^{2} \cdot 3^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1.99010\)
Root analytic conductor: \(1.18773\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 31212,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.697448101\)
\(L(\frac12)\) \(\approx\) \(1.697448101\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 - T \)
17$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.52566566553203306448675052964, −9.723242141956922614700830245165, −9.570394810938145814587700544156, −9.104444876573252449353403617805, −8.000937863938982294341146593643, −7.958882066985845549410362974675, −7.36440720073199929079936076774, −6.79533660929922109224513153399, −6.05886413503827459123865903257, −5.51457882926074302977186886250, −4.66119827871442481374467622682, −4.13875090005906653574798019221, −2.92323665285260202872977027719, −2.76309813409348720224135008444, −1.43438626728056627432143840048, 1.43438626728056627432143840048, 2.76309813409348720224135008444, 2.92323665285260202872977027719, 4.13875090005906653574798019221, 4.66119827871442481374467622682, 5.51457882926074302977186886250, 6.05886413503827459123865903257, 6.79533660929922109224513153399, 7.36440720073199929079936076774, 7.958882066985845549410362974675, 8.000937863938982294341146593643, 9.104444876573252449353403617805, 9.570394810938145814587700544156, 9.723242141956922614700830245165, 10.52566566553203306448675052964

Graph of the $Z$-function along the critical line