Properties

Degree 4
Conductor $ 2^{2} \cdot 3^{3} \cdot 5^{2} $
Sign $1$
Motivic weight 1
Primitive no
Self-dual yes
Analytic rank 0

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s − 8·7-s + 9-s + 12-s + 4·13-s + 16-s − 8·19-s − 8·21-s + 25-s + 27-s − 8·28-s + 16·31-s + 36-s + 4·37-s + 4·39-s − 8·43-s + 48-s + 34·49-s + 4·52-s − 8·57-s − 20·61-s − 8·63-s + 64-s − 8·67-s + 4·73-s + 75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s − 3.02·7-s + 1/3·9-s + 0.288·12-s + 1.10·13-s + 1/4·16-s − 1.83·19-s − 1.74·21-s + 1/5·25-s + 0.192·27-s − 1.51·28-s + 2.87·31-s + 1/6·36-s + 0.657·37-s + 0.640·39-s − 1.21·43-s + 0.144·48-s + 34/7·49-s + 0.554·52-s − 1.05·57-s − 2.56·61-s − 1.00·63-s + 1/8·64-s − 0.977·67-s + 0.468·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(2700\)    =    \(2^{2} \cdot 3^{3} \cdot 5^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{2700} (1, \cdot )$
Sato-Tate  :  $\mathrm{SU}(2)$
primitive  :  no
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(4,\ 2700,\ (\ :1/2, 1/2),\ 1)$
$L(1)$  $\approx$  $0.7472587609$
$L(\frac12)$  $\approx$  $0.7472587609$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;5\}$, \[F_p(T) = 1 - a_p T + b_p T^2 - a_p p T^3 + p^2 T^4 \]with $b_p = a_p^2 - a_{p^2}$. If $p \in \{2,\;3,\;5\}$, then $F_p$ is a polynomial of degree at most 3.
$p$$\Gal(F_p)$$F_p$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.19720570989419308005927819605, −12.30986793353697911256504493943, −12.14360527021257208948458691105, −10.91913531404329383721387224500, −10.39160509435207624542212960871, −9.880541566397139490214892173475, −9.305587122869086271308905422277, −8.644229019078172602684577487278, −7.941231322257043910223245152113, −6.73106470746564203527567325446, −6.42217617652666865799421983967, −6.11397905422548756742635703073, −4.32687879913691587957737883725, −3.36585804145949552210873743484, −2.74628747875934588873509462774, 2.74628747875934588873509462774, 3.36585804145949552210873743484, 4.32687879913691587957737883725, 6.11397905422548756742635703073, 6.42217617652666865799421983967, 6.73106470746564203527567325446, 7.941231322257043910223245152113, 8.644229019078172602684577487278, 9.305587122869086271308905422277, 9.880541566397139490214892173475, 10.39160509435207624542212960871, 10.91913531404329383721387224500, 12.14360527021257208948458691105, 12.30986793353697911256504493943, 13.19720570989419308005927819605

Graph of the $Z$-function along the critical line