Properties

Label 4-900747-1.1-c1e2-0-0
Degree $4$
Conductor $900747$
Sign $-1$
Analytic cond. $57.4324$
Root an. cond. $2.75289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·4-s + 4·7-s + 9-s + 3·12-s + 4·13-s + 5·16-s − 4·21-s + 6·25-s − 27-s − 12·28-s − 16·31-s − 3·36-s + 8·37-s − 4·39-s − 5·48-s + 2·49-s − 12·52-s − 12·61-s + 4·63-s − 3·64-s + 4·67-s + 5·73-s − 6·75-s − 12·79-s + 81-s + 12·84-s + ⋯
L(s)  = 1  − 0.577·3-s − 3/2·4-s + 1.51·7-s + 1/3·9-s + 0.866·12-s + 1.10·13-s + 5/4·16-s − 0.872·21-s + 6/5·25-s − 0.192·27-s − 2.26·28-s − 2.87·31-s − 1/2·36-s + 1.31·37-s − 0.640·39-s − 0.721·48-s + 2/7·49-s − 1.66·52-s − 1.53·61-s + 0.503·63-s − 3/8·64-s + 0.488·67-s + 0.585·73-s − 0.692·75-s − 1.35·79-s + 1/9·81-s + 1.30·84-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 900747 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900747 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(900747\)    =    \(3^{3} \cdot 73 \cdot 457\)
Sign: $-1$
Analytic conductor: \(57.4324\)
Root analytic conductor: \(2.75289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 900747,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
73$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 6 T + p T^{2} ) \)
457$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 26 T + p T^{2} ) \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
11$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.945018114278809811205558519490, −7.66170406073068916340334433189, −7.22464808196773099075262602515, −6.50761632428092117333907091187, −6.09102903000053795512672653221, −5.49852661735854644068749511091, −5.13634081621122251888447317999, −4.89097620767505370416324664659, −4.28118470304150477463851535934, −3.92227552418233884290072679003, −3.44581884404686450790287806483, −2.51850931121389303882919035510, −1.52871890730946335219777266949, −1.18385481320461125472968043380, 0, 1.18385481320461125472968043380, 1.52871890730946335219777266949, 2.51850931121389303882919035510, 3.44581884404686450790287806483, 3.92227552418233884290072679003, 4.28118470304150477463851535934, 4.89097620767505370416324664659, 5.13634081621122251888447317999, 5.49852661735854644068749511091, 6.09102903000053795512672653221, 6.50761632428092117333907091187, 7.22464808196773099075262602515, 7.66170406073068916340334433189, 7.945018114278809811205558519490

Graph of the $Z$-function along the critical line