Properties

Label 4-900081-1.1-c1e2-0-4
Degree $4$
Conductor $900081$
Sign $-1$
Analytic cond. $57.3899$
Root an. cond. $2.75238$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 2·7-s − 2·9-s − 2·12-s + 13-s − 7·19-s − 2·21-s − 2·25-s − 5·27-s + 4·28-s − 2·31-s + 4·36-s + 15·37-s + 39-s + 21·43-s + 3·49-s − 2·52-s − 7·57-s + 61-s + 4·63-s + 8·64-s + 5·67-s + 16·73-s − 2·75-s + 14·76-s − 27·79-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.755·7-s − 2/3·9-s − 0.577·12-s + 0.277·13-s − 1.60·19-s − 0.436·21-s − 2/5·25-s − 0.962·27-s + 0.755·28-s − 0.359·31-s + 2/3·36-s + 2.46·37-s + 0.160·39-s + 3.20·43-s + 3/7·49-s − 0.277·52-s − 0.927·57-s + 0.128·61-s + 0.503·63-s + 64-s + 0.610·67-s + 1.87·73-s − 0.230·75-s + 1.60·76-s − 3.03·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 900081 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900081 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(900081\)    =    \(3^{2} \cdot 7^{2} \cdot 13 \cdot 157\)
Sign: $-1$
Analytic conductor: \(57.3899\)
Root analytic conductor: \(2.75238\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 900081,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + p T^{2} \)
7$C_1$ \( ( 1 + T )^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 2 T + p T^{2} ) \)
157$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 2 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 21 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + 11 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.175103398471717001174795995142, −7.60152577513698248037384881289, −7.20093367475201307681764379924, −6.48891849967434372347939513893, −6.18251082148931620042689407809, −5.71166117532807465223075397170, −5.36825183723845399742565356566, −4.39181834955626270018660051830, −4.28156071781390340579393795057, −3.87131895817643317945492144748, −3.16264691496313075075906095461, −2.49372941601990847213775271161, −2.24368424699872810368910669445, −0.926622631406678675659944923079, 0, 0.926622631406678675659944923079, 2.24368424699872810368910669445, 2.49372941601990847213775271161, 3.16264691496313075075906095461, 3.87131895817643317945492144748, 4.28156071781390340579393795057, 4.39181834955626270018660051830, 5.36825183723845399742565356566, 5.71166117532807465223075397170, 6.18251082148931620042689407809, 6.48891849967434372347939513893, 7.20093367475201307681764379924, 7.60152577513698248037384881289, 8.175103398471717001174795995142

Graph of the $Z$-function along the critical line