Properties

Label 4-264e2-1.1-c1e2-0-1
Degree $4$
Conductor $69696$
Sign $1$
Analytic cond. $4.44387$
Root an. cond. $1.45191$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·5-s + 3·9-s + 4·11-s + 8·15-s − 16·23-s + 2·25-s − 4·27-s + 16·31-s − 8·33-s + 12·37-s − 12·45-s − 14·49-s − 4·53-s − 16·55-s + 8·59-s − 8·67-s + 32·69-s + 16·71-s − 4·75-s + 5·81-s − 12·89-s − 32·93-s + 4·97-s + 12·99-s + 32·103-s − 24·111-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.78·5-s + 9-s + 1.20·11-s + 2.06·15-s − 3.33·23-s + 2/5·25-s − 0.769·27-s + 2.87·31-s − 1.39·33-s + 1.97·37-s − 1.78·45-s − 2·49-s − 0.549·53-s − 2.15·55-s + 1.04·59-s − 0.977·67-s + 3.85·69-s + 1.89·71-s − 0.461·75-s + 5/9·81-s − 1.27·89-s − 3.31·93-s + 0.406·97-s + 1.20·99-s + 3.15·103-s − 2.27·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(69696\)    =    \(2^{6} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(4.44387\)
Root analytic conductor: \(1.45191\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 69696,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5480491836\)
\(L(\frac12)\) \(\approx\) \(0.5480491836\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.964671915727173343349228861429, −9.646412525003839411544338452938, −8.632814053171275790838666005226, −8.098990694093691505068092710868, −7.88365108150257423936793116264, −7.41145043458246524552596785021, −6.42897107072744719896577758454, −6.34034973016640940830304663850, −5.85561327512449935358731086305, −4.76750339316057597575339371032, −4.25303028692796488061253338187, −4.08582339913610742428343396917, −3.30728356810877078064881030636, −1.97854038896010733538639767531, −0.63207175719826203780734613127, 0.63207175719826203780734613127, 1.97854038896010733538639767531, 3.30728356810877078064881030636, 4.08582339913610742428343396917, 4.25303028692796488061253338187, 4.76750339316057597575339371032, 5.85561327512449935358731086305, 6.34034973016640940830304663850, 6.42897107072744719896577758454, 7.41145043458246524552596785021, 7.88365108150257423936793116264, 8.098990694093691505068092710868, 8.632814053171275790838666005226, 9.646412525003839411544338452938, 9.964671915727173343349228861429

Graph of the $Z$-function along the critical line