Properties

Label 4-770e2-1.1-c1e2-0-18
Degree $4$
Conductor $592900$
Sign $-1$
Analytic cond. $37.8038$
Root an. cond. $2.47961$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·5-s − 6·9-s + 4·11-s + 16-s − 2·20-s + 3·25-s + 16·31-s − 6·36-s − 20·37-s + 4·44-s + 12·45-s + 16·47-s + 49-s − 4·53-s − 8·55-s − 16·59-s + 64-s − 24·67-s − 32·71-s − 2·80-s + 27·81-s + 20·89-s + 4·97-s − 24·99-s + 3·100-s + 32·103-s + ⋯
L(s)  = 1  + 1/2·4-s − 0.894·5-s − 2·9-s + 1.20·11-s + 1/4·16-s − 0.447·20-s + 3/5·25-s + 2.87·31-s − 36-s − 3.28·37-s + 0.603·44-s + 1.78·45-s + 2.33·47-s + 1/7·49-s − 0.549·53-s − 1.07·55-s − 2.08·59-s + 1/8·64-s − 2.93·67-s − 3.79·71-s − 0.223·80-s + 3·81-s + 2.11·89-s + 0.406·97-s − 2.41·99-s + 3/10·100-s + 3.15·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 592900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 592900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(592900\)    =    \(2^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(37.8038\)
Root analytic conductor: \(2.47961\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 592900,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$ \( ( 1 + T )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.267889620477558478773970636673, −7.61679473492378752838968818800, −7.45420248729985818641828193491, −6.82056701612064998634186124368, −6.17616144092315208416665412995, −6.12828563996775624727810348890, −5.56548617967314624330824606220, −4.63923341949934829303628265619, −4.61875239739401252269849039001, −3.69516946377050774425439998698, −3.09181792884659532775858950361, −3.00381372509091040158022668795, −2.06078218456002324346666781043, −1.14034834640667941355654881863, 0, 1.14034834640667941355654881863, 2.06078218456002324346666781043, 3.00381372509091040158022668795, 3.09181792884659532775858950361, 3.69516946377050774425439998698, 4.61875239739401252269849039001, 4.63923341949934829303628265619, 5.56548617967314624330824606220, 6.12828563996775624727810348890, 6.17616144092315208416665412995, 6.82056701612064998634186124368, 7.45420248729985818641828193491, 7.61679473492378752838968818800, 8.267889620477558478773970636673

Graph of the $Z$-function along the critical line