Properties

Label 4-671e2-1.1-c1e2-0-0
Degree $4$
Conductor $450241$
Sign $1$
Analytic cond. $28.7077$
Root an. cond. $2.31472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 3·4-s − 6·5-s + 6·9-s − 5·11-s + 12·12-s + 24·15-s + 5·16-s + 18·20-s − 18·23-s + 17·25-s + 4·27-s + 20·33-s − 18·36-s + 16·37-s + 15·44-s − 36·45-s + 8·47-s − 20·48-s − 13·49-s + 12·53-s + 30·55-s + 18·59-s − 72·60-s − 3·64-s − 14·67-s + 72·69-s + ⋯
L(s)  = 1  − 2.30·3-s − 3/2·4-s − 2.68·5-s + 2·9-s − 1.50·11-s + 3.46·12-s + 6.19·15-s + 5/4·16-s + 4.02·20-s − 3.75·23-s + 17/5·25-s + 0.769·27-s + 3.48·33-s − 3·36-s + 2.63·37-s + 2.26·44-s − 5.36·45-s + 1.16·47-s − 2.88·48-s − 1.85·49-s + 1.64·53-s + 4.04·55-s + 2.34·59-s − 9.29·60-s − 3/8·64-s − 1.71·67-s + 8.66·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450241 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450241 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(450241\)    =    \(11^{2} \cdot 61^{2}\)
Sign: $1$
Analytic conductor: \(28.7077\)
Root analytic conductor: \(2.31472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 450241,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11$C_2$ \( 1 + 5 T + p T^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.214644259662643725428835431279, −7.66039763333771123227596439320, −7.44527095540533686848888098295, −6.64444629781009788738361946627, −6.00646746388851025333489625692, −5.60157612088078313975836309422, −5.43650672338497627064179356489, −4.51604888222126848033561730521, −4.26508467002293325004309474944, −4.25666915587159511841100490901, −3.43011094815890270849961379878, −2.55202902956317307533327873816, −0.75342584052823796311141171419, 0, 0, 0.75342584052823796311141171419, 2.55202902956317307533327873816, 3.43011094815890270849961379878, 4.25666915587159511841100490901, 4.26508467002293325004309474944, 4.51604888222126848033561730521, 5.43650672338497627064179356489, 5.60157612088078313975836309422, 6.00646746388851025333489625692, 6.64444629781009788738361946627, 7.44527095540533686848888098295, 7.66039763333771123227596439320, 8.214644259662643725428835431279

Graph of the $Z$-function along the critical line