Properties

Label 4-2002e2-1.1-c1e2-0-4
Degree $4$
Conductor $4008004$
Sign $1$
Analytic cond. $255.553$
Root an. cond. $3.99825$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 4·5-s − 6·9-s + 4·11-s + 16-s + 4·20-s + 16·23-s + 2·25-s − 16·31-s − 6·36-s + 12·37-s + 4·44-s − 24·45-s − 16·47-s + 49-s + 12·53-s + 16·55-s + 16·59-s + 64-s + 8·67-s − 16·71-s + 4·80-s + 27·81-s + 36·89-s + 16·92-s + 4·97-s − 24·99-s + ⋯
L(s)  = 1  + 1/2·4-s + 1.78·5-s − 2·9-s + 1.20·11-s + 1/4·16-s + 0.894·20-s + 3.33·23-s + 2/5·25-s − 2.87·31-s − 36-s + 1.97·37-s + 0.603·44-s − 3.57·45-s − 2.33·47-s + 1/7·49-s + 1.64·53-s + 2.15·55-s + 2.08·59-s + 1/8·64-s + 0.977·67-s − 1.89·71-s + 0.447·80-s + 3·81-s + 3.81·89-s + 1.66·92-s + 0.406·97-s − 2.41·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4008004 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4008004 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4008004\)    =    \(2^{2} \cdot 7^{2} \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(255.553\)
Root analytic conductor: \(3.99825\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4008004,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.981576126\)
\(L(\frac12)\) \(\approx\) \(3.981576126\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 - 4 T + p T^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.18951670915097387570457531436, −7.08827055361374002488782088399, −6.32358215795933556597678864095, −6.19217622188912966190136871625, −5.91665951755465501251112502300, −5.29943015736314161359833373222, −5.21535057877927416914375242112, −4.73057752361113131284783498762, −3.67764363944170895713490289621, −3.51840718185624303027243325096, −2.96567033999897366329822632527, −2.27950576664097092555756241695, −2.18713180950649411226712364496, −1.38757950676875077475246877875, −0.72883362867603820321005479251, 0.72883362867603820321005479251, 1.38757950676875077475246877875, 2.18713180950649411226712364496, 2.27950576664097092555756241695, 2.96567033999897366329822632527, 3.51840718185624303027243325096, 3.67764363944170895713490289621, 4.73057752361113131284783498762, 5.21535057877927416914375242112, 5.29943015736314161359833373222, 5.91665951755465501251112502300, 6.19217622188912966190136871625, 6.32358215795933556597678864095, 7.08827055361374002488782088399, 7.18951670915097387570457531436

Graph of the $Z$-function along the critical line