Properties

Label 4-3066624-1.1-c1e2-0-57
Degree $4$
Conductor $3066624$
Sign $1$
Analytic cond. $195.530$
Root an. cond. $3.73941$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s + 11-s − 12·23-s − 10·25-s − 4·27-s − 16·31-s − 2·33-s − 20·37-s + 12·47-s − 10·49-s + 8·67-s + 24·69-s − 12·71-s + 20·75-s + 5·81-s − 12·89-s + 32·93-s + 28·97-s + 3·99-s + 8·103-s + 40·111-s + 36·113-s + 121-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s + 0.301·11-s − 2.50·23-s − 2·25-s − 0.769·27-s − 2.87·31-s − 0.348·33-s − 3.28·37-s + 1.75·47-s − 1.42·49-s + 0.977·67-s + 2.88·69-s − 1.42·71-s + 2.30·75-s + 5/9·81-s − 1.27·89-s + 3.31·93-s + 2.84·97-s + 0.301·99-s + 0.788·103-s + 3.79·111-s + 3.38·113-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3066624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3066624 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3066624\)    =    \(2^{8} \cdot 3^{2} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(195.530\)
Root analytic conductor: \(3.73941\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 3066624,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
11$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.15001151228072728345472327672, −6.73373984274544568686272664379, −6.01435881870512402755326279246, −5.80771575321423739175967870457, −5.77859618909253610703452808610, −4.97589384532422545853514681972, −4.75034201814524111107553764909, −3.94115256297343253062160005188, −3.62485072881439717663109857391, −3.56342125758668518106535855673, −2.12574870769826326935834056810, −2.02292253942257951840802942475, −1.42670529206492309486707433636, 0, 0, 1.42670529206492309486707433636, 2.02292253942257951840802942475, 2.12574870769826326935834056810, 3.56342125758668518106535855673, 3.62485072881439717663109857391, 3.94115256297343253062160005188, 4.75034201814524111107553764909, 4.97589384532422545853514681972, 5.77859618909253610703452808610, 5.80771575321423739175967870457, 6.01435881870512402755326279246, 6.73373984274544568686272664379, 7.15001151228072728345472327672

Graph of the $Z$-function along the critical line