Properties

Label 4-1122e2-1.1-c1e2-0-10
Degree $4$
Conductor $1258884$
Sign $-1$
Analytic cond. $80.2675$
Root an. cond. $2.99319$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4-s − 4·5-s + 3·9-s − 4·11-s + 2·12-s − 8·15-s + 16-s − 4·20-s + 2·25-s + 4·27-s + 16·31-s − 8·33-s + 3·36-s − 4·37-s − 4·44-s − 12·45-s + 2·48-s − 14·49-s + 12·53-s + 16·55-s + 24·59-s − 8·60-s + 64-s − 24·67-s + 4·75-s − 4·80-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/2·4-s − 1.78·5-s + 9-s − 1.20·11-s + 0.577·12-s − 2.06·15-s + 1/4·16-s − 0.894·20-s + 2/5·25-s + 0.769·27-s + 2.87·31-s − 1.39·33-s + 1/2·36-s − 0.657·37-s − 0.603·44-s − 1.78·45-s + 0.288·48-s − 2·49-s + 1.64·53-s + 2.15·55-s + 3.12·59-s − 1.03·60-s + 1/8·64-s − 2.93·67-s + 0.461·75-s − 0.447·80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1258884 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1258884 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1258884\)    =    \(2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(80.2675\)
Root analytic conductor: \(2.99319\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1258884,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( ( 1 - T )^{2} \)
11$C_2$ \( 1 + 4 T + p T^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.958882066985845549410362974675, −7.36440720073199929079936076774, −7.17015458110489899878368281457, −6.72884801535058667170696059539, −6.11887476554628092067039386855, −5.51457882926074302977186886250, −4.98149691236367693223181594270, −4.33709791955016592854024404044, −4.13875090005906653574798019221, −3.57025483924234576580912047342, −2.92580973222471519775314024765, −2.76309813409348720224135008444, −2.04715104709696587907765661420, −1.10797907566740122108357243035, 0, 1.10797907566740122108357243035, 2.04715104709696587907765661420, 2.76309813409348720224135008444, 2.92580973222471519775314024765, 3.57025483924234576580912047342, 4.13875090005906653574798019221, 4.33709791955016592854024404044, 4.98149691236367693223181594270, 5.51457882926074302977186886250, 6.11887476554628092067039386855, 6.72884801535058667170696059539, 7.17015458110489899878368281457, 7.36440720073199929079936076774, 7.958882066985845549410362974675

Graph of the $Z$-function along the critical line