Properties

Label 4-976-1.1-c1e2-0-0
Degree $4$
Conductor $976$
Sign $1$
Analytic cond. $0.0622306$
Root an. cond. $0.499460$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s + 4-s − 5-s − 3·6-s − 7-s + 8-s + 2·9-s − 10-s − 3·12-s + 13-s − 14-s + 3·15-s + 16-s + 17-s + 2·18-s + 19-s − 20-s + 3·21-s − 2·23-s − 3·24-s + 4·25-s + 26-s + 6·27-s − 28-s − 4·29-s + 3·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s − 0.447·5-s − 1.22·6-s − 0.377·7-s + 0.353·8-s + 2/3·9-s − 0.316·10-s − 0.866·12-s + 0.277·13-s − 0.267·14-s + 0.774·15-s + 1/4·16-s + 0.242·17-s + 0.471·18-s + 0.229·19-s − 0.223·20-s + 0.654·21-s − 0.417·23-s − 0.612·24-s + 4/5·25-s + 0.196·26-s + 1.15·27-s − 0.188·28-s − 0.742·29-s + 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 976 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(976\)    =    \(2^{4} \cdot 61\)
Sign: $1$
Analytic conductor: \(0.0622306\)
Root analytic conductor: \(0.499460\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 976,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4448401744\)
\(L(\frac12)\) \(\approx\) \(0.4448401744\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
61$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 4 T + p T^{2} ) \)
good3$D_{4}$ \( 1 + p T + 7 T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 + T - 3 T^{2} + p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + T + p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - T - 11 T^{2} - p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - T + 18 T^{2} - p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - T + 6 T^{2} - p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 24 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 10 T + 54 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 12 T + 88 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - T + 71 T^{2} - p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 5 T + 18 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 3 T + 82 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 4 T + 48 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 9 T + 38 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$D_{4}$ \( 1 - 11 T + 124 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 6 T + 96 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 15 T + 170 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 11 T + 194 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 3 T + 69 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.4586025370, −18.9749133632, −18.2304605358, −17.6733498957, −17.0742839009, −16.6817637323, −16.1533018451, −15.5877137378, −15.0321617582, −14.1137911686, −13.6578656160, −12.7490174834, −12.1505566654, −11.8317748852, −11.1890472479, −10.6491298476, −9.97417646363, −8.80177061714, −7.87057358791, −6.76763269606, −6.25568035712, −5.43141387719, −4.72869776713, −3.34642751055, 3.34642751055, 4.72869776713, 5.43141387719, 6.25568035712, 6.76763269606, 7.87057358791, 8.80177061714, 9.97417646363, 10.6491298476, 11.1890472479, 11.8317748852, 12.1505566654, 12.7490174834, 13.6578656160, 14.1137911686, 15.0321617582, 15.5877137378, 16.1533018451, 16.6817637323, 17.0742839009, 17.6733498957, 18.2304605358, 18.9749133632, 19.4586025370

Graph of the $Z$-function along the critical line