Properties

Label 4-832-1.1-c1e2-0-0
Degree $4$
Conductor $832$
Sign $1$
Analytic cond. $0.0530490$
Root an. cond. $0.479920$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 3·5-s − 6-s + 7-s + 3·8-s − 9-s + 3·10-s − 2·11-s − 12-s − 3·13-s − 14-s − 3·15-s − 16-s − 17-s + 18-s + 6·19-s + 3·20-s + 21-s + 2·22-s + 4·23-s + 3·24-s + 5·25-s + 3·26-s − 28-s − 4·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 1.34·5-s − 0.408·6-s + 0.377·7-s + 1.06·8-s − 1/3·9-s + 0.948·10-s − 0.603·11-s − 0.288·12-s − 0.832·13-s − 0.267·14-s − 0.774·15-s − 1/4·16-s − 0.242·17-s + 0.235·18-s + 1.37·19-s + 0.670·20-s + 0.218·21-s + 0.426·22-s + 0.834·23-s + 0.612·24-s + 25-s + 0.588·26-s − 0.188·28-s − 0.742·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(0.0530490\)
Root analytic conductor: \(0.479920\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 832,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3304408648\)
\(L(\frac12)\) \(\approx\) \(0.3304408648\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 2 T + p T^{2} ) \)
good3$D_{4}$ \( 1 - T + 2 T^{2} - p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - T + 6 T^{2} - p T^{3} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$D_{4}$ \( 1 + T + 12 T^{2} + p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 6 T + 30 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$D_{4}$ \( 1 - 4 T - 2 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - T - 4 T^{2} - p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 2 T + 26 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + T + 34 T^{2} + p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 3 T + 14 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 2 T - 46 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 2 T + 14 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 2 T + 82 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 6 T + 110 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 5 T - 10 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$D_{4}$ \( 1 + 8 T + 126 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 8 T + 150 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.5300872181, −19.4007722715, −18.6329972128, −18.2081679127, −17.6124422211, −16.9063109276, −16.4216613983, −15.6687698793, −15.1928085275, −14.4783816352, −14.0226213653, −13.2063721228, −12.6192770724, −11.6440885133, −11.3152538141, −10.3505984087, −9.66069435557, −8.85373180412, −8.26136097152, −7.65596743232, −7.13649335166, −5.28321752117, −4.47622417566, −3.16032422593, 3.16032422593, 4.47622417566, 5.28321752117, 7.13649335166, 7.65596743232, 8.26136097152, 8.85373180412, 9.66069435557, 10.3505984087, 11.3152538141, 11.6440885133, 12.6192770724, 13.2063721228, 14.0226213653, 14.4783816352, 15.1928085275, 15.6687698793, 16.4216613983, 16.9063109276, 17.6124422211, 18.2081679127, 18.6329972128, 19.4007722715, 19.5300872181

Graph of the $Z$-function along the critical line