Properties

Label 4-745-1.1-c1e2-0-0
Degree $4$
Conductor $745$
Sign $1$
Analytic cond. $0.0475018$
Root an. cond. $0.466850$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·5-s − 8-s + 9-s + 2·10-s − 6·11-s + 6·13-s − 16-s + 3·17-s − 18-s − 2·19-s + 6·22-s + 2·25-s − 6·26-s + 10·29-s − 4·31-s + 6·32-s − 3·34-s − 3·37-s + 2·38-s + 2·40-s − 7·41-s − 2·43-s − 2·45-s + 12·47-s − 4·49-s − 2·50-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.894·5-s − 0.353·8-s + 1/3·9-s + 0.632·10-s − 1.80·11-s + 1.66·13-s − 1/4·16-s + 0.727·17-s − 0.235·18-s − 0.458·19-s + 1.27·22-s + 2/5·25-s − 1.17·26-s + 1.85·29-s − 0.718·31-s + 1.06·32-s − 0.514·34-s − 0.493·37-s + 0.324·38-s + 0.316·40-s − 1.09·41-s − 0.304·43-s − 0.298·45-s + 1.75·47-s − 4/7·49-s − 0.282·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 745 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 745 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(745\)    =    \(5 \cdot 149\)
Sign: $1$
Analytic conductor: \(0.0475018\)
Root analytic conductor: \(0.466850\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 745,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3033683921\)
\(L(\frac12)\) \(\approx\) \(0.3033683921\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 3 T + p T^{2} ) \)
149$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 3 T + p T^{2} ) \)
good2$D_{4}$ \( 1 + T + T^{2} + p T^{3} + p^{2} T^{4} \)
3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$D_{4}$ \( 1 - 6 T + 22 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 10 T + 70 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 4 T - 10 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 3 T - 26 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 7 T + 58 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 2 T + 33 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 12 T + 76 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 3 T - 56 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 4 T + 98 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 6 T + 58 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 4 T + 72 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 4 T + 82 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 13 T + 106 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 5 T + 36 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.0175590619, −18.7852639927, −18.3864789002, −17.8724895485, −17.2471813924, −16.1863564617, −16.0022669588, −15.4897891357, −14.9633152762, −13.8010550729, −13.4674608833, −12.5770536509, −12.0604944284, −11.1426095747, −10.5931757928, −10.0239343547, −8.90231813249, −8.36451151583, −7.84075246067, −6.82992066661, −5.75608613814, −4.54479150477, −3.18405320212, 3.18405320212, 4.54479150477, 5.75608613814, 6.82992066661, 7.84075246067, 8.36451151583, 8.90231813249, 10.0239343547, 10.5931757928, 11.1426095747, 12.0604944284, 12.5770536509, 13.4674608833, 13.8010550729, 14.9633152762, 15.4897891357, 16.0022669588, 16.1863564617, 17.2471813924, 17.8724895485, 18.3864789002, 18.7852639927, 19.0175590619

Graph of the $Z$-function along the critical line