Properties

Label 4-713-1.1-c1e2-0-1
Degree $4$
Conductor $713$
Sign $-1$
Analytic cond. $0.0454614$
Root an. cond. $0.461754$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 3·3-s + 4·4-s − 3·5-s + 9·6-s − 7-s − 3·8-s + 3·9-s + 9·10-s + 2·11-s − 12·12-s − 13-s + 3·14-s + 9·15-s + 3·16-s − 6·17-s − 9·18-s − 19-s − 12·20-s + 3·21-s − 6·22-s + 3·23-s + 9·24-s − 25-s + 3·26-s − 4·28-s − 29-s + ⋯
L(s)  = 1  − 2.12·2-s − 1.73·3-s + 2·4-s − 1.34·5-s + 3.67·6-s − 0.377·7-s − 1.06·8-s + 9-s + 2.84·10-s + 0.603·11-s − 3.46·12-s − 0.277·13-s + 0.801·14-s + 2.32·15-s + 3/4·16-s − 1.45·17-s − 2.12·18-s − 0.229·19-s − 2.68·20-s + 0.654·21-s − 1.27·22-s + 0.625·23-s + 1.83·24-s − 1/5·25-s + 0.588·26-s − 0.755·28-s − 0.185·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 713 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 713 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(713\)    =    \(23 \cdot 31\)
Sign: $-1$
Analytic conductor: \(0.0454614\)
Root analytic conductor: \(0.461754\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 713,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad23$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 4 T + p T^{2} ) \)
31$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 7 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + 3 T + 5 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
3$C_2$ \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$D_{4}$ \( 1 + T + p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 2 T - 6 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + T - 18 T^{2} + p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 6 T + 38 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + T + 24 T^{2} + p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + T + 20 T^{2} + p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 2 T - 18 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 2 T + 55 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 6 T + 22 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
53$D_{4}$ \( 1 - 6 T + 10 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 3 T + 34 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 6 T + 22 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 67 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
79$D_{4}$ \( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 12 T + 106 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 18 T + 198 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 9 T + 192 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.8971127403, −19.4056567905, −19.1840316354, −18.4581018875, −17.8333365431, −17.5656470005, −17.0223440017, −16.5796496332, −16.1356961151, −15.3769715506, −14.9269755582, −13.6309406332, −12.5771496933, −12.0447938759, −11.3853576550, −11.0213075774, −10.4331925831, −9.43004529313, −8.94994866452, −8.12600514348, −7.29123823885, −6.58425089035, −5.52465756405, −4.09720022067, 0, 4.09720022067, 5.52465756405, 6.58425089035, 7.29123823885, 8.12600514348, 8.94994866452, 9.43004529313, 10.4331925831, 11.0213075774, 11.3853576550, 12.0447938759, 12.5771496933, 13.6309406332, 14.9269755582, 15.3769715506, 16.1356961151, 16.5796496332, 17.0223440017, 17.5656470005, 17.8333365431, 18.4581018875, 19.1840316354, 19.4056567905, 19.8971127403

Graph of the $Z$-function along the critical line