Properties

Label 4-80e2-1.1-c1e2-0-15
Degree $4$
Conductor $6400$
Sign $1$
Analytic cond. $0.408069$
Root an. cond. $0.799251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 4·3-s + 2·4-s − 4·5-s + 8·6-s − 6·7-s + 6·9-s + 8·10-s − 2·11-s − 8·12-s + 12·14-s + 16·15-s − 4·16-s + 2·17-s − 12·18-s − 6·19-s − 8·20-s + 24·21-s + 4·22-s − 2·23-s + 11·25-s + 4·27-s − 12·28-s − 14·29-s − 32·30-s + 8·32-s + 8·33-s + ⋯
L(s)  = 1  − 1.41·2-s − 2.30·3-s + 4-s − 1.78·5-s + 3.26·6-s − 2.26·7-s + 2·9-s + 2.52·10-s − 0.603·11-s − 2.30·12-s + 3.20·14-s + 4.13·15-s − 16-s + 0.485·17-s − 2.82·18-s − 1.37·19-s − 1.78·20-s + 5.23·21-s + 0.852·22-s − 0.417·23-s + 11/5·25-s + 0.769·27-s − 2.26·28-s − 2.59·29-s − 5.84·30-s + 1.41·32-s + 1.39·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6400\)    =    \(2^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.408069\)
Root analytic conductor: \(0.799251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 22 T + 242 T^{2} + 22 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.21442938078161757019809759424, −12.96317739991569446309415491808, −12.80830581494530963976800378598, −12.43225073815099575731022978335, −11.56026651288003495969755770482, −11.43204301764673511085392549231, −10.68161814271764683129864823345, −10.61649948138300935650475551650, −9.699859526262278865980790027689, −9.307682822426627168383887243707, −8.294765114665058736602328411165, −7.88638268394394799902523829232, −6.88805760583972888980449229505, −6.69179242865704678912310909522, −5.99255617960231670738492661515, −5.18013618333723223342449259876, −4.16929381792922326649904005931, −3.19744395278082895586299779894, 0, 0, 3.19744395278082895586299779894, 4.16929381792922326649904005931, 5.18013618333723223342449259876, 5.99255617960231670738492661515, 6.69179242865704678912310909522, 6.88805760583972888980449229505, 7.88638268394394799902523829232, 8.294765114665058736602328411165, 9.307682822426627168383887243707, 9.699859526262278865980790027689, 10.61649948138300935650475551650, 10.68161814271764683129864823345, 11.43204301764673511085392549231, 11.56026651288003495969755770482, 12.43225073815099575731022978335, 12.80830581494530963976800378598, 12.96317739991569446309415491808, 14.21442938078161757019809759424

Graph of the $Z$-function along the critical line