Properties

Label 4-5904-1.1-c1e2-0-0
Degree $4$
Conductor $5904$
Sign $-1$
Analytic cond. $0.376444$
Root an. cond. $0.783294$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s − 4·7-s + 9-s − 11-s − 6·13-s + 4·15-s + 5·17-s − 6·19-s + 8·21-s + 6·23-s + 4·25-s + 4·27-s + 29-s − 5·31-s + 2·33-s + 8·35-s + 37-s + 12·39-s − 41-s − 9·43-s − 2·45-s − 13·47-s + 6·49-s − 10·51-s + 2·55-s + 12·57-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.301·11-s − 1.66·13-s + 1.03·15-s + 1.21·17-s − 1.37·19-s + 1.74·21-s + 1.25·23-s + 4/5·25-s + 0.769·27-s + 0.185·29-s − 0.898·31-s + 0.348·33-s + 1.35·35-s + 0.164·37-s + 1.92·39-s − 0.156·41-s − 1.37·43-s − 0.298·45-s − 1.89·47-s + 6/7·49-s − 1.40·51-s + 0.269·55-s + 1.58·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5904\)    =    \(2^{4} \cdot 3^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(0.376444\)
Root analytic conductor: \(0.783294\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 5904,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
good5$D_{4}$ \( 1 + 2 T + 2 p T^{3} + p^{2} T^{4} \)
7$C_4$ \( 1 + 4 T + 10 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + T + 6 T^{2} + p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 6 T + 22 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$D_{4}$ \( 1 - 6 T + 48 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - T - 28 T^{2} - p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 5 T + 14 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - T - 32 T^{2} - p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 9 T + 82 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$D_{4}$ \( 1 + 2 T - 18 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 3 T + 96 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 4 T + 70 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$D_{4}$ \( 1 - 19 T + 204 T^{2} - 19 p T^{3} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$D_{4}$ \( 1 + 8 T + 52 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
97$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.2023405045, −16.8482493977, −16.6873689184, −16.2591705204, −15.5423915949, −15.0775890188, −14.6681950222, −14.0388478642, −12.9310358989, −12.7247376150, −12.5063319023, −11.7290851083, −11.3609233088, −10.6217950714, −10.1272250252, −9.65513813235, −8.89113133673, −8.07117990284, −7.38490535339, −6.67376499949, −6.36296694387, −5.20184409837, −4.91068971172, −3.65362251723, −2.84588893439, 0, 2.84588893439, 3.65362251723, 4.91068971172, 5.20184409837, 6.36296694387, 6.67376499949, 7.38490535339, 8.07117990284, 8.89113133673, 9.65513813235, 10.1272250252, 10.6217950714, 11.3609233088, 11.7290851083, 12.5063319023, 12.7247376150, 12.9310358989, 14.0388478642, 14.6681950222, 15.0775890188, 15.5423915949, 16.2591705204, 16.6873689184, 16.8482493977, 17.2023405045

Graph of the $Z$-function along the critical line