Properties

Label 4-5170-1.1-c1e2-0-1
Degree $4$
Conductor $5170$
Sign $1$
Analytic cond. $0.329643$
Root an. cond. $0.757724$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 4·3-s + 4-s − 5·5-s + 8·6-s − 3·7-s + 2·8-s + 8·9-s + 10·10-s − 5·11-s − 4·12-s − 3·13-s + 6·14-s + 20·15-s − 3·16-s − 16·18-s − 5·20-s + 12·21-s + 10·22-s − 5·23-s − 8·24-s + 16·25-s + 6·26-s − 12·27-s − 3·28-s − 40·30-s − 3·31-s + ⋯
L(s)  = 1  − 1.41·2-s − 2.30·3-s + 1/2·4-s − 2.23·5-s + 3.26·6-s − 1.13·7-s + 0.707·8-s + 8/3·9-s + 3.16·10-s − 1.50·11-s − 1.15·12-s − 0.832·13-s + 1.60·14-s + 5.16·15-s − 3/4·16-s − 3.77·18-s − 1.11·20-s + 2.61·21-s + 2.13·22-s − 1.04·23-s − 1.63·24-s + 16/5·25-s + 1.17·26-s − 2.30·27-s − 0.566·28-s − 7.30·30-s − 0.538·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5170 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5170 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5170\)    =    \(2 \cdot 5 \cdot 11 \cdot 47\)
Sign: $1$
Analytic conductor: \(0.329643\)
Root analytic conductor: \(0.757724\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 5170,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + T + p T^{2} ) \)
5$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 4 T + p T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 6 T + p T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 8 T + p T^{2} ) \)
good3$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 3 T + 8 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 3 T + 12 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$D_{4}$ \( 1 + 3 T + 10 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 3 T - 12 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$D_{4}$ \( 1 + 3 T + 20 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 4 T - 2 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 2 T - 54 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 15 T + 124 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 3 T + 90 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 3 T + 80 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 15 T + 164 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 3 T - 68 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.8469755854, −17.5900530504, −16.8661383015, −16.4505579301, −16.2461482738, −15.8818027294, −15.3391577074, −14.7873411580, −13.5858501088, −12.8430098630, −12.4484355418, −12.0222923483, −11.5323098707, −10.9300191086, −10.5881841884, −10.0543428415, −9.47428782586, −8.44527305830, −7.92601082051, −7.36764143454, −6.88614051004, −5.93805395449, −5.11380884851, −4.50832910358, −3.40824732257, 0, 0, 3.40824732257, 4.50832910358, 5.11380884851, 5.93805395449, 6.88614051004, 7.36764143454, 7.92601082051, 8.44527305830, 9.47428782586, 10.0543428415, 10.5881841884, 10.9300191086, 11.5323098707, 12.0222923483, 12.4484355418, 12.8430098630, 13.5858501088, 14.7873411580, 15.3391577074, 15.8818027294, 16.2461482738, 16.4505579301, 16.8661383015, 17.5900530504, 17.8469755854

Graph of the $Z$-function along the critical line