Properties

Label 4-68e2-1.1-c1e2-0-3
Degree $4$
Conductor $4624$
Sign $1$
Analytic cond. $0.294830$
Root an. cond. $0.736873$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s + 2·9-s − 10-s + 11-s − 12-s − 3·13-s + 14-s + 15-s + 16-s − 8·17-s + 2·18-s + 19-s − 20-s − 21-s + 22-s + 7·23-s − 24-s − 6·25-s − 3·26-s − 6·27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 2/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s − 0.832·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s − 1.94·17-s + 0.471·18-s + 0.229·19-s − 0.223·20-s − 0.218·21-s + 0.213·22-s + 1.45·23-s − 0.204·24-s − 6/5·25-s − 0.588·26-s − 1.15·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4624 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4624\)    =    \(2^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(0.294830\)
Root analytic conductor: \(0.736873\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4624,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9820145451\)
\(L(\frac12)\) \(\approx\) \(0.9820145451\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
17$C_2$ \( 1 + 8 T + p T^{2} \)
good3$D_{4}$ \( 1 + T - T^{2} + p T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 + T + 7 T^{2} + p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - T - 3 T^{2} - p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - T - 6 T^{2} - p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 3 T + 9 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - T + 9 T^{2} - p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 7 T + 41 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 5 T + 35 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 9 T + 54 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 4 T + 30 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 74 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 5 T + 10 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 9 T + 62 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 3 T - 47 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 4 T + 34 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + T - 40 T^{2} + p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 4 T + 78 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 15 T + 148 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 12 T + 126 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 11 T + 129 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 12 T + 126 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 9 T + 147 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.4324043631, −17.1211991965, −16.6772929038, −15.8582403142, −15.5119037755, −15.0566948824, −14.7513678050, −13.7580880779, −13.4159412967, −12.9537205259, −12.2837006792, −11.6498055040, −11.3368193653, −10.9441342949, −9.98877203020, −9.54753125432, −8.66713293923, −7.88810787093, −7.18895974894, −6.68123501679, −5.92801304442, −4.85985315178, −4.58672818807, −3.56545627221, −2.13577992043, 2.13577992043, 3.56545627221, 4.58672818807, 4.85985315178, 5.92801304442, 6.68123501679, 7.18895974894, 7.88810787093, 8.66713293923, 9.54753125432, 9.98877203020, 10.9441342949, 11.3368193653, 11.6498055040, 12.2837006792, 12.9537205259, 13.4159412967, 13.7580880779, 14.7513678050, 15.0566948824, 15.5119037755, 15.8582403142, 16.6772929038, 17.1211991965, 17.4324043631

Graph of the $Z$-function along the critical line