Properties

Label 4-20e2-1.1-c1e2-0-1
Degree $4$
Conductor $400$
Sign $1$
Analytic cond. $0.0255043$
Root an. cond. $0.399625$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 2·5-s + 4·7-s + 6·9-s + 4·13-s + 8·15-s − 12·17-s − 8·19-s − 16·21-s + 12·23-s + 3·25-s + 4·27-s + 12·29-s − 8·31-s − 8·35-s + 4·37-s − 16·39-s + 12·41-s − 20·43-s − 12·45-s − 12·47-s − 2·49-s + 48·51-s − 12·53-s + 32·57-s + 24·59-s + 4·61-s + ⋯
L(s)  = 1  − 2.30·3-s − 0.894·5-s + 1.51·7-s + 2·9-s + 1.10·13-s + 2.06·15-s − 2.91·17-s − 1.83·19-s − 3.49·21-s + 2.50·23-s + 3/5·25-s + 0.769·27-s + 2.22·29-s − 1.43·31-s − 1.35·35-s + 0.657·37-s − 2.56·39-s + 1.87·41-s − 3.04·43-s − 1.78·45-s − 1.75·47-s − 2/7·49-s + 6.72·51-s − 1.64·53-s + 4.23·57-s + 3.12·59-s + 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.0255043\)
Root analytic conductor: \(0.399625\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2215859706\)
\(L(\frac12)\) \(\approx\) \(0.2215859706\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.3.e_k
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.7.ae_s
11$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.11.a_w
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.13.ae_be
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.17.m_cs
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.19.i_cc
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.23.am_de
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.29.am_dq
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.31.i_da
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.37.ae_da
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.41.am_eo
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.43.u_he
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.47.m_fa
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.53.m_fm
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \) 2.59.ay_kc
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.61.ae_ew
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.67.ae_fi
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \) 2.71.y_la
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.73.ae_fu
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.79.aq_io
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.83.am_hu
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.89.m_ig
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.97.ae_hq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.6035760866, −19.6035760866, −18.1271877078, −18.1271877078, −17.3081878781, −17.3081878781, −16.0995603957, −16.0995603957, −14.7919331095, −14.7919331095, −13.0023664158, −13.0023664158, −11.5085445320, −11.5085445320, −10.8347395030, −10.8347395030, −8.55221755078, −8.55221755078, −6.57891116466, −6.57891116466, −4.78130792718, −4.78130792718, 4.78130792718, 4.78130792718, 6.57891116466, 6.57891116466, 8.55221755078, 8.55221755078, 10.8347395030, 10.8347395030, 11.5085445320, 11.5085445320, 13.0023664158, 13.0023664158, 14.7919331095, 14.7919331095, 16.0995603957, 16.0995603957, 17.3081878781, 17.3081878781, 18.1271877078, 18.1271877078, 19.6035760866, 19.6035760866

Graph of the $Z$-function along the critical line