Properties

Label 4-3798-1.1-c1e2-0-0
Degree $4$
Conductor $3798$
Sign $-1$
Analytic cond. $0.242163$
Root an. cond. $0.701499$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5·5-s + 6-s − 4·7-s + 8-s + 5·10-s − 2·11-s − 12-s − 2·13-s + 4·14-s + 5·15-s − 3·16-s + 17-s + 6·19-s − 5·20-s + 4·21-s + 2·22-s − 6·23-s − 24-s + 12·25-s + 2·26-s + 27-s − 4·28-s − 5·30-s − 31-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 2.23·5-s + 0.408·6-s − 1.51·7-s + 0.353·8-s + 1.58·10-s − 0.603·11-s − 0.288·12-s − 0.554·13-s + 1.06·14-s + 1.29·15-s − 3/4·16-s + 0.242·17-s + 1.37·19-s − 1.11·20-s + 0.872·21-s + 0.426·22-s − 1.25·23-s − 0.204·24-s + 12/5·25-s + 0.392·26-s + 0.192·27-s − 0.755·28-s − 0.912·30-s − 0.179·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3798 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3798 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3798\)    =    \(2 \cdot 3^{2} \cdot 211\)
Sign: $-1$
Analytic conductor: \(0.242163\)
Root analytic conductor: \(0.701499\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 3798,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + p T + p T^{2} ) \)
3$C_2$ \( 1 + T + T^{2} \)
211$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 6 T + p T^{2} ) \)
good5$D_{4}$ \( 1 + p T + 13 T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 4 T + 15 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 2 T + 3 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 2 T + 19 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - T - 19 T^{2} - p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 6 T + 21 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 20 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 43 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 4 T + 33 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + T + 24 T^{2} + p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 3 T + 84 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - T - 60 T^{2} - p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 5 T - T^{2} + 5 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + T + 82 T^{2} + p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 5 T + 35 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - T - 73 T^{2} - p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 8 T + 81 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 2 T + 120 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 13 T + 129 T^{2} + 13 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 9 T + 103 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 6 T + 88 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 26 T + 343 T^{2} + 26 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.3657796780, −17.6403671687, −16.9411918866, −16.4861737985, −15.9471596302, −15.7634709075, −15.6264495799, −14.6515156346, −13.9378348340, −13.2516643548, −12.4028804449, −12.2588133929, −11.5856855557, −11.2013497522, −10.4881368735, −9.88736057736, −9.37938138453, −8.32201424049, −7.85944768110, −7.30649843830, −6.83086423496, −5.82837333769, −4.77334768819, −3.83921588386, −3.03610267946, 0, 3.03610267946, 3.83921588386, 4.77334768819, 5.82837333769, 6.83086423496, 7.30649843830, 7.85944768110, 8.32201424049, 9.37938138453, 9.88736057736, 10.4881368735, 11.2013497522, 11.5856855557, 12.2588133929, 12.4028804449, 13.2516643548, 13.9378348340, 14.6515156346, 15.6264495799, 15.7634709075, 15.9471596302, 16.4861737985, 16.9411918866, 17.6403671687, 18.3657796780

Graph of the $Z$-function along the critical line