Properties

Label 4-167e2-1.1-c1e2-0-0
Degree $4$
Conductor $27889$
Sign $1$
Analytic cond. $1.77822$
Root an. cond. $1.15477$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 2·4-s − 2·5-s + 6-s − 5·7-s + 3·8-s − 4·9-s + 2·10-s + 2·12-s − 5·13-s + 5·14-s + 2·15-s + 16-s − 5·17-s + 4·18-s + 4·20-s + 5·21-s + 23-s − 3·24-s − 7·25-s + 5·26-s + 6·27-s + 10·28-s + 8·29-s − 2·30-s + 6·31-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 4-s − 0.894·5-s + 0.408·6-s − 1.88·7-s + 1.06·8-s − 4/3·9-s + 0.632·10-s + 0.577·12-s − 1.38·13-s + 1.33·14-s + 0.516·15-s + 1/4·16-s − 1.21·17-s + 0.942·18-s + 0.894·20-s + 1.09·21-s + 0.208·23-s − 0.612·24-s − 7/5·25-s + 0.980·26-s + 1.15·27-s + 1.88·28-s + 1.48·29-s − 0.365·30-s + 1.07·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27889 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27889 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(27889\)    =    \(167^{2}\)
Sign: $1$
Analytic conductor: \(1.77822\)
Root analytic conductor: \(1.15477\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 27889,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad167$C_1$ \( ( 1 + T )^{2} \)
good2$D_{4}$ \( 1 + T + 3 T^{2} + p T^{3} + p^{2} T^{4} \)
3$D_{4}$ \( 1 + T + 5 T^{2} + p T^{3} + p^{2} T^{4} \)
5$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$D_{4}$ \( 1 + 5 T + 19 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$D_{4}$ \( 1 + 5 T + 31 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 5 T + 39 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - T + 45 T^{2} - p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 8 T + 69 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 6 T + 66 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 12 T + 105 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 2 T + 3 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 6 T + 15 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
53$D_{4}$ \( 1 + 10 T + 126 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 2 T + 114 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 117 T^{2} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 4 T + 133 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 11 T + 141 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 19 T + 225 T^{2} + 19 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 2 T + 139 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 2 T + 87 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 2 T + 54 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 21 T + 293 T^{2} + 21 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.25047198128916819428580278737, −12.10344489296036794817082750402, −11.75999058567646841414051267325, −11.00264520804220653887930141660, −10.31459274500394545140246311737, −10.08030900339094430248252807123, −9.407135099814296032923668235565, −9.109231719281949975091417041726, −8.485161563929556055614154271202, −8.167241448518487695616982907009, −7.33234652955298690478844263890, −6.77212364193621050414832681660, −6.19595447725949612902325342091, −5.57068769982988803465290620174, −4.71806617982442292753682333899, −4.28237281363890767911049859818, −3.29035960345559828858033705025, −2.68748749398594051914538701024, 0, 0, 2.68748749398594051914538701024, 3.29035960345559828858033705025, 4.28237281363890767911049859818, 4.71806617982442292753682333899, 5.57068769982988803465290620174, 6.19595447725949612902325342091, 6.77212364193621050414832681660, 7.33234652955298690478844263890, 8.167241448518487695616982907009, 8.485161563929556055614154271202, 9.109231719281949975091417041726, 9.407135099814296032923668235565, 10.08030900339094430248252807123, 10.31459274500394545140246311737, 11.00264520804220653887930141660, 11.75999058567646841414051267325, 12.10344489296036794817082750402, 12.25047198128916819428580278737

Graph of the $Z$-function along the critical line