Properties

Label 4-528e2-1.1-c1e2-0-59
Degree $4$
Conductor $278784$
Sign $-1$
Analytic cond. $17.7755$
Root an. cond. $2.05331$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 9-s + 8·17-s − 6·25-s − 16·31-s + 16·41-s − 16·47-s − 2·49-s − 4·63-s + 16·71-s + 12·73-s − 4·79-s + 81-s − 28·89-s − 4·97-s + 8·103-s + 12·113-s − 32·119-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 8·153-s + 157-s + ⋯
L(s)  = 1  − 1.51·7-s + 1/3·9-s + 1.94·17-s − 6/5·25-s − 2.87·31-s + 2.49·41-s − 2.33·47-s − 2/7·49-s − 0.503·63-s + 1.89·71-s + 1.40·73-s − 0.450·79-s + 1/9·81-s − 2.96·89-s − 0.406·97-s + 0.788·103-s + 1.12·113-s − 2.93·119-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.646·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 278784 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 278784 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(278784\)    =    \(2^{8} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(17.7755\)
Root analytic conductor: \(2.05331\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 278784,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.a_g
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.7.e_s
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.13.a_w
17$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.17.ai_by
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.19.a_c
23$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.23.a_bu
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.29.a_ag
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.31.q_ew
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.37.a_aba
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.41.aq_fq
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.43.a_de
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.47.q_gc
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.53.a_dy
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.59.a_aba
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.61.a_w
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.67.a_ak
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.71.aq_hy
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.73.am_ha
79$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.79.e_gg
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.83.a_adm
89$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \) 2.89.bc_ok
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.97.e_hq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.697378542798902823491104067867, −7.996057650348538062805293058353, −7.72631363953136915387787766784, −7.28812361303940758705899469077, −6.70453643193197308588262041684, −6.29193852608811379346856906138, −5.57597672794261375151284320175, −5.57273521417705379772496968279, −4.70259670750098263834122811525, −3.79294235641559942977546839028, −3.62099987433418911195776240983, −3.07850752465069161467538811560, −2.21252199435586523776406167130, −1.32100257593873677544894423336, 0, 1.32100257593873677544894423336, 2.21252199435586523776406167130, 3.07850752465069161467538811560, 3.62099987433418911195776240983, 3.79294235641559942977546839028, 4.70259670750098263834122811525, 5.57273521417705379772496968279, 5.57597672794261375151284320175, 6.29193852608811379346856906138, 6.70453643193197308588262041684, 7.28812361303940758705899469077, 7.72631363953136915387787766784, 7.996057650348538062805293058353, 8.697378542798902823491104067867

Graph of the $Z$-function along the critical line