| L(s) = 1 | − 4·7-s + 9-s + 8·17-s − 6·25-s − 16·31-s + 16·41-s − 16·47-s − 2·49-s − 4·63-s + 16·71-s + 12·73-s − 4·79-s + 81-s − 28·89-s − 4·97-s + 8·103-s + 12·113-s − 32·119-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 8·153-s + 157-s + ⋯ |
| L(s) = 1 | − 1.51·7-s + 1/3·9-s + 1.94·17-s − 6/5·25-s − 2.87·31-s + 2.49·41-s − 2.33·47-s − 2/7·49-s − 0.503·63-s + 1.89·71-s + 1.40·73-s − 0.450·79-s + 1/9·81-s − 2.96·89-s − 0.406·97-s + 0.788·103-s + 1.12·113-s − 2.93·119-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.646·153-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 278784 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 278784 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.697378542798902823491104067867, −7.996057650348538062805293058353, −7.72631363953136915387787766784, −7.28812361303940758705899469077, −6.70453643193197308588262041684, −6.29193852608811379346856906138, −5.57597672794261375151284320175, −5.57273521417705379772496968279, −4.70259670750098263834122811525, −3.79294235641559942977546839028, −3.62099987433418911195776240983, −3.07850752465069161467538811560, −2.21252199435586523776406167130, −1.32100257593873677544894423336, 0,
1.32100257593873677544894423336, 2.21252199435586523776406167130, 3.07850752465069161467538811560, 3.62099987433418911195776240983, 3.79294235641559942977546839028, 4.70259670750098263834122811525, 5.57273521417705379772496968279, 5.57597672794261375151284320175, 6.29193852608811379346856906138, 6.70453643193197308588262041684, 7.28812361303940758705899469077, 7.72631363953136915387787766784, 7.996057650348538062805293058353, 8.697378542798902823491104067867