Properties

Label 4-146e2-1.1-c1e2-0-3
Degree $4$
Conductor $21316$
Sign $1$
Analytic cond. $1.35912$
Root an. cond. $1.07972$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 6·5-s + 2·6-s + 8-s − 3·9-s + 6·10-s − 3·11-s − 6·13-s + 12·15-s − 16-s + 3·18-s − 4·19-s + 3·22-s + 6·23-s − 2·24-s + 19·25-s + 6·26-s + 14·27-s − 12·29-s − 12·30-s − 6·31-s + 6·33-s + 8·37-s + 4·38-s + 12·39-s − 6·40-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 2.68·5-s + 0.816·6-s + 0.353·8-s − 9-s + 1.89·10-s − 0.904·11-s − 1.66·13-s + 3.09·15-s − 1/4·16-s + 0.707·18-s − 0.917·19-s + 0.639·22-s + 1.25·23-s − 0.408·24-s + 19/5·25-s + 1.17·26-s + 2.69·27-s − 2.22·29-s − 2.19·30-s − 1.07·31-s + 1.04·33-s + 1.31·37-s + 0.648·38-s + 1.92·39-s − 0.948·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21316 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21316 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21316\)    =    \(2^{2} \cdot 73^{2}\)
Sign: $1$
Analytic conductor: \(1.35912\)
Root analytic conductor: \(1.07972\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 21316,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
73$C_2$ \( 1 + 17 T + p T^{2} \)
good3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 3 T + 14 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 4 T - 3 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 6 T + 13 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 12 T + 77 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 6 T + 43 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 8 T + 27 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 3 T - 32 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 6 T + 59 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 12 T + 101 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 21 T + 206 T^{2} + 21 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 13 T + 102 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 6 T - 35 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 8 T - 15 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 18 T + 235 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59895283481266364816412229728, −12.27719954441586546846105030385, −11.53910483125938074395233905132, −11.32319959735832751266609429960, −10.81946434213386912228406824765, −10.81861148034629771762224560101, −9.732565157905116941574377381543, −9.005539304370804007168266199408, −8.666719081696028592083629942304, −7.86297422010336148723211376042, −7.58553142205687535859490089874, −7.33795555024028488706237695657, −6.38478101174134296391661529267, −5.55593631292815416482399106270, −4.87830021958763730050277928701, −4.50099204841611143485533819483, −3.49549533144765509086144008548, −2.72452869622617230035330060514, 0, 0, 2.72452869622617230035330060514, 3.49549533144765509086144008548, 4.50099204841611143485533819483, 4.87830021958763730050277928701, 5.55593631292815416482399106270, 6.38478101174134296391661529267, 7.33795555024028488706237695657, 7.58553142205687535859490089874, 7.86297422010336148723211376042, 8.666719081696028592083629942304, 9.005539304370804007168266199408, 9.732565157905116941574377381543, 10.81861148034629771762224560101, 10.81946434213386912228406824765, 11.32319959735832751266609429960, 11.53910483125938074395233905132, 12.27719954441586546846105030385, 12.59895283481266364816412229728

Graph of the $Z$-function along the critical line